找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations and Mathematical Physics; Proceedings of an In Ian W. Knowles,Yoshimi Saitō Conference proceedings 1987 Springer-Ver

[復制鏈接]
樓主: bile-acids
21#
發(fā)表于 2025-3-25 03:51:37 | 只看該作者
Asymptotics of solutions and spectra of perturbed periodic Hamiltonian systems,
22#
發(fā)表于 2025-3-25 08:26:50 | 只看該作者
23#
發(fā)表于 2025-3-25 12:35:31 | 只看該作者
Conference proceedings 1987contain survey material. Topics covered include: Schr?dinger theory, scattering and inverse scattering, fluid mechanics (including conservative systems and inertial manifold theory attractors), elasticity, non-linear waves, and feedback control theory.
24#
發(fā)表于 2025-3-25 15:54:53 | 只看該作者
0075-8434 pers also contain survey material. Topics covered include: Schr?dinger theory, scattering and inverse scattering, fluid mechanics (including conservative systems and inertial manifold theory attractors), elasticity, non-linear waves, and feedback control theory.978-3-540-18479-9978-3-540-47983-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
25#
發(fā)表于 2025-3-25 22:04:37 | 只看該作者
,On the ratio of the first two eigenvalues of Schr?dinger operators with positive potentials,inger operators. Lastly, we present our recent result giving the best possible upper bound λ./λ.≤4 for one-dimensional Schr?dinger operators with nonnegative potentials and discuss some extensions of this result.
26#
發(fā)表于 2025-3-26 02:09:07 | 只看該作者
0075-8434 ntial equations, both linear and non-linear, with particular reference to work relating to the equations of mathematical physics. The meeting was attended by about 250 mathematicians from 22 countries. The papers in this volume all involve new research material, with at least outline proofs; some pa
27#
發(fā)表于 2025-3-26 05:28:21 | 只看該作者
Joseph O. Deasy Ph.D,Issam El Naqa Ph.Dinger operators. Lastly, we present our recent result giving the best possible upper bound λ./λ.≤4 for one-dimensional Schr?dinger operators with nonnegative potentials and discuss some extensions of this result.
28#
發(fā)表于 2025-3-26 10:25:47 | 只看該作者
,On the ratio of the first two eigenvalues of Schr?dinger operators with positive potentials,et boundary conditions and non-negative potentials. We discuss the Payne-Pólya-Weinberger conjecture for H.=?Δ and generalize the conjecture to Schr?dinger operators. Lastly, we present our recent result giving the best possible upper bound λ./λ.≤4 for one-dimensional Schr?dinger operators with nonn
29#
發(fā)表于 2025-3-26 15:01:41 | 只看該作者
Existence and finite-dimensionality of attractors for the Landau-Lifschitz equations, for the understanding of nonequilibrium magnetism. We sketch a proof that, under quite general conditions, dissipative forms of these equations have attracting sets which are finite-dimensional in a suitable sense. In particular, upper bounds are obtained for the Hausdorff and fractal dimensions of
30#
發(fā)表于 2025-3-26 17:06:06 | 只看該作者
Der Aufbau der Jugendstudie StaufenDie Jugendstudie Staufen war von Beginn so angelegt, dass man sich dem zentralen Thema ?Freizeitm?glichkeiten von Jugendlichen in Staufen“ aus verschiedenen Blickwinkeln n?hern wollte.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宜丰县| 仪征市| 遵义县| 屯昌县| 花垣县| 隆安县| 崇仁县| 沧州市| 孝义市| 商洛市| 卫辉市| 页游| 宝丰县| 太谷县| 榕江县| 来凤县| 密山市| 瓮安县| 乌拉特前旗| 平凉市| 吉水县| 鹿邑县| 横峰县| 西乡县| 靖远县| 六安市| 福州市| 甘谷县| 科技| 延安市| 丽江市| 神木县| 竹北市| 彭山县| 松原市| 宣汉县| 辽宁省| 资源县| 依兰县| 西吉县| 涿州市|