找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations Theory, Numerics and Applications; Proceedings of the I E. Groesen,E. Soewono Conference proceedings 1997 Springer S

[復(fù)制鏈接]
樓主: 領(lǐng)口
51#
發(fā)表于 2025-3-30 10:55:55 | 只看該作者
Racist Regimes, Forced Labour and Deathregarded as a simple model describing wind-induced oscillations of flexible structures like suspension bridges or overhead transmission lines. Using a two-timescales perturbation method approximations for solutions of this initial-boundary value problem will be constructed.
52#
發(fā)表于 2025-3-30 16:23:34 | 只看該作者
53#
發(fā)表于 2025-3-30 19:18:15 | 只看該作者
https://doi.org/10.1007/978-3-030-69281-0ned that would otherwise be difficult to detect. A general approach to the modelling of data is presented in this paper, and is illustrated for numerical data of the splitting of a wave due to bottom variations.
54#
發(fā)表于 2025-3-30 21:50:10 | 只看該作者
55#
發(fā)表于 2025-3-31 01:29:48 | 只看該作者
56#
發(fā)表于 2025-3-31 06:16:29 | 只看該作者
57#
發(fā)表于 2025-3-31 12:55:16 | 只看該作者
Parametric Excitation in Mechanical Systemsitation is characterized by terms in the differential equations which have time-dependent coefficients. A standard example of an equation which displays parametric excitation is the Mathieu equation. In this paper two systems will be considered in more detail: a pendulum and a stretched string both
58#
發(fā)表于 2025-3-31 15:03:02 | 只看該作者
59#
發(fā)表于 2025-3-31 18:44:52 | 只看該作者
60#
發(fā)表于 2025-3-31 21:58:56 | 只看該作者
The Influence of an External Force on a Solitary Wavemall amplitude, using both asymptotic analysis and numerical simulations. The analysis leads to a reduced dynamical system for the solitary wave amplitude and position, and this is analysed in detail. The theory predicts that the main regimes are passage, repulsion or trapping. These theoretical pre
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
历史| 江津市| 甘洛县| 芦溪县| 清徐县| 丽水市| 尉氏县| 钟山县| 合作市| 大邑县| 大安市| 杂多县| 广东省| 张北县| 逊克县| 朔州市| 六枝特区| 连城县| 泌阳县| 科技| 家居| 阿荣旗| 平南县| 赞皇县| 九龙县| 沽源县| 贵溪市| 平安县| 鞍山市| 龙口市| 弥渡县| 灵宝市| 盐源县| 澳门| 胶南市| 汾西县| 星座| 崇礼县| 调兵山市| 丰县| 方正县|