找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Analysis on Complex Manifolds; R. O. Wells Textbook 19802nd edition Springer Science+Business Media New York 1980 Analysis.ca

[復(fù)制鏈接]
查看: 40707|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:41:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Differential Analysis on Complex Manifolds
編輯R. O. Wells
視頻videohttp://file.papertrans.cn/279/278640/278640.mp4
概述Presents a concise introduction to the basics of analysis and geometry on compact complex manifolds.Provides tools which are the building blocks of many mathematical developments over the past 30 year
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Differential Analysis on Complex Manifolds;  R. O. Wells Textbook 19802nd edition Springer Science+Business Media New York 1980 Analysis.ca
描述.In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths‘s period mapping, quadratic transformations, and Kodaira‘s vanishing and embedding theorems. ..The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of certain developments in the field during the decades since the book first?appeared...From reviews of the 2nd Edition:."..the new edition of Professor Wells‘ book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work."..- Nigel Hitchin, Bulletin of the London M
出版日期Textbook 19802nd edition
關(guān)鍵詞Analysis; calculus; differenzierbare Mannigfaltigkeit; komplexe Mannigfaltigkeit; manifold
版次2
doihttps://doi.org/10.1007/978-1-4757-3946-6
isbn_ebook978-1-4757-3946-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1980
The information of publication is updating

書目名稱Differential Analysis on Complex Manifolds影響因子(影響力)




書目名稱Differential Analysis on Complex Manifolds影響因子(影響力)學(xué)科排名




書目名稱Differential Analysis on Complex Manifolds網(wǎng)絡(luò)公開(kāi)度




書目名稱Differential Analysis on Complex Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Differential Analysis on Complex Manifolds被引頻次




書目名稱Differential Analysis on Complex Manifolds被引頻次學(xué)科排名




書目名稱Differential Analysis on Complex Manifolds年度引用




書目名稱Differential Analysis on Complex Manifolds年度引用學(xué)科排名




書目名稱Differential Analysis on Complex Manifolds讀者反饋




書目名稱Differential Analysis on Complex Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:45:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:59:15 | 只看該作者
地板
發(fā)表于 2025-3-22 05:48:33 | 只看該作者
5#
發(fā)表于 2025-3-22 12:33:47 | 只看該作者
6#
發(fā)表于 2025-3-22 13:18:37 | 只看該作者
7#
發(fā)表于 2025-3-22 17:05:29 | 只看該作者
R. O. WellsPresents a concise introduction to the basics of analysis and geometry on compact complex manifolds.Provides tools which are the building blocks of many mathematical developments over the past 30 year
8#
發(fā)表于 2025-3-22 23:06:20 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/d/image/278640.jpg
9#
發(fā)表于 2025-3-23 04:45:33 | 只看該作者
Differential Analysis on Complex Manifolds978-1-4757-3946-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
10#
發(fā)表于 2025-3-23 08:31:58 | 只看該作者
https://doi.org/10.1007/978-1-4757-3946-6Analysis; calculus; differenzierbare Mannigfaltigkeit; komplexe Mannigfaltigkeit; manifold
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 21:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
个旧市| 黔东| 桃园市| 邢台市| 淮北市| 松原市| 元氏县| 乌拉特中旗| 育儿| 盐山县| 金湖县| 门源| 花垣县| 宜州市| 边坝县| 容城县| 宣恩县| 武平县| 佳木斯市| 二连浩特市| 安仁县| 卓资县| 大埔县| 阿城市| 泸溪县| 南郑县| 普兰店市| 黎川县| 英吉沙县| 岫岩| 宁都县| 南木林县| 米林县| 呼伦贝尔市| 怀安县| 吉首市| 庆城县| 黑龙江省| 谷城县| 弥勒县| 砚山县|