找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Manifolds; Lawrence Conlon Textbook 2001Latest edition Birkh?user Boston 2001 Differential Geometry.Global Calculus.Topolog

[復(fù)制鏈接]
樓主: 五個(gè)
21#
發(fā)表于 2025-3-25 06:56:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:52:58 | 只看該作者
23#
發(fā)表于 2025-3-25 15:36:05 | 只看該作者
24#
發(fā)表于 2025-3-25 16:30:04 | 只看該作者
Topological Manifolds,This chapter pertains to the global theory of manifolds. See also [., Chapter I] and [., Chapter 1].
25#
發(fā)表于 2025-3-25 21:48:30 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:29 | 只看該作者
The Global Theory of Smooth Functions,Our present goal is to extend the theory of smooth functions, developed on open subsets of ?. in Chapter 2, to arbitrary differentiable manifolds. Geometric topology becomes an essential feature.
27#
發(fā)表于 2025-3-26 04:33:21 | 只看該作者
Lie Groups and Lie Algebras,Lie groups and their Lie algebras play a central role in geometry, topology, and analysis. Here we can only give a brief introduction to this fascinating topic.
28#
發(fā)表于 2025-3-26 12:26:19 | 只看該作者
Multilinear Algebra and Tensors,Smooth functions, vector fields and 1-forms are . of fairly simple types. In order to handle higher order tensors, we will need some rather sophisticated multilinear algebra. The reader who is well grounded in the multilinear algebra of .-modules can skip ahead to Section 7.4, referring to the first three sections only as needed.
29#
發(fā)表于 2025-3-26 14:03:09 | 只看該作者
Forms and Foliations,In Section 4.5, we proved the vector field version of the Frobenius integrability theorem: . Γ(.) .(.) .. In this chapter, we develop an equivalent version of this theorem, stated in terms of the Grassmann algebra .*(.) of differential forms. Useful consequences of this point of view will be treated.
30#
發(fā)表于 2025-3-26 18:21:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 15:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西和县| 丘北县| 新营市| 荣昌县| 新泰市| 曲水县| 曲松县| 甘德县| 龙陵县| 建昌县| 广丰县| 韩城市| 高州市| 岱山县| 罗源县| 昭平县| 襄樊市| 赫章县| 太和县| 阜南县| 米林县| 会宁县| 台北县| 布拖县| 安宁市| 厦门市| 岑溪市| 敖汉旗| 陆川县| 明溪县| 太白县| 沐川县| 湖口县| 佛坪县| 肥城市| 枝江市| 昌图县| 平塘县| 辛集市| 越西县| 思茅市|