找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Manifolds; Lawrence Conlon Textbook 2001Latest edition Birkh?user Boston 2001 Differential Geometry.Global Calculus.Topolog

[復制鏈接]
樓主: 五個
21#
發(fā)表于 2025-3-25 06:56:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:52:58 | 只看該作者
23#
發(fā)表于 2025-3-25 15:36:05 | 只看該作者
24#
發(fā)表于 2025-3-25 16:30:04 | 只看該作者
Topological Manifolds,This chapter pertains to the global theory of manifolds. See also [., Chapter I] and [., Chapter 1].
25#
發(fā)表于 2025-3-25 21:48:30 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:29 | 只看該作者
The Global Theory of Smooth Functions,Our present goal is to extend the theory of smooth functions, developed on open subsets of ?. in Chapter 2, to arbitrary differentiable manifolds. Geometric topology becomes an essential feature.
27#
發(fā)表于 2025-3-26 04:33:21 | 只看該作者
Lie Groups and Lie Algebras,Lie groups and their Lie algebras play a central role in geometry, topology, and analysis. Here we can only give a brief introduction to this fascinating topic.
28#
發(fā)表于 2025-3-26 12:26:19 | 只看該作者
Multilinear Algebra and Tensors,Smooth functions, vector fields and 1-forms are . of fairly simple types. In order to handle higher order tensors, we will need some rather sophisticated multilinear algebra. The reader who is well grounded in the multilinear algebra of .-modules can skip ahead to Section 7.4, referring to the first three sections only as needed.
29#
發(fā)表于 2025-3-26 14:03:09 | 只看該作者
Forms and Foliations,In Section 4.5, we proved the vector field version of the Frobenius integrability theorem: . Γ(.) .(.) .. In this chapter, we develop an equivalent version of this theorem, stated in terms of the Grassmann algebra .*(.) of differential forms. Useful consequences of this point of view will be treated.
30#
發(fā)表于 2025-3-26 18:21:05 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
荆州市| 江源县| 南澳县| 龙游县| 阳信县| 禄丰县| 惠东县| 江油市| 庆安县| 临城县| 彰化县| 毕节市| 桦川县| 肃宁县| 哈密市| 弥勒县| 砀山县| 张北县| 喀什市| 洪雅县| 宜都市| 德昌县| 宣化县| 安西县| 清新县| 道真| 嘉祥县| 六枝特区| 南通市| 克什克腾旗| 东方市| 神木县| 湘潭县| 千阳县| 连云港市| 五家渠市| 平江县| 云龙县| 双柏县| 泸州市| 汾阳市|