找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Difference Equations from Differential Equations; Wilbert James Lick Book 1989 Springer-Verlag Berlin, Heidelberg 1989 Algebra.algorithm.a

[復制鏈接]
樓主: dabble
11#
發(fā)表于 2025-3-23 11:29:03 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:05 | 只看該作者
Parabolic Equations,ssified in much the same way as ordinary differential equations, e.g., first-order or higher-order, linear or nonlinear, homogeneous or non-homogeneous. Certain properties of PDEs are important in determining the appropriate numerical analysis for these PDEs and, because of this, those properties will be briefly reviewed here.
13#
發(fā)表于 2025-3-23 18:04:03 | 只看該作者
Hyperbolic Equations,l be functions of x, y, ?, ??/?x, and ??/?y. For b. ? 4ac > 0, the equation is hyperbolic and two families of real characteristics exist. As mentioned previously, characteristics are lines across which derivatives of the dependent variables may be discontinuous and along which infinitesimal disturbances may propagate.
14#
發(fā)表于 2025-3-24 02:11:46 | 只看該作者
15#
發(fā)表于 2025-3-24 02:23:20 | 只看該作者
16#
發(fā)表于 2025-3-24 09:14:12 | 只看該作者
17#
發(fā)表于 2025-3-24 10:41:58 | 只看該作者
18#
發(fā)表于 2025-3-24 18:49:33 | 只看該作者
Elliptic Equations,Elliptic partial differential equations usually describe the steady-state limit of problems where the time-dependent problem is described by parabolic or hyperbolic partial differential equations. They may also describe problems where the time dependence has an assumed form, such as sinusoidal with time.
19#
發(fā)表于 2025-3-24 19:43:41 | 只看該作者
Difference Equations from Differential Equations978-3-642-83701-2Series ISSN 0176-5035
20#
發(fā)表于 2025-3-24 23:56:43 | 只看該作者
E. Klieser,E. Lehmann,W. H. Strau?c difference equations from ordinary differential equations. A secondary purpose is to develop the proper ideas and procedures for later use in deriving difference equations from partial differential equations.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
玉树县| 都兰县| 陇川县| 汶上县| 遂宁市| 加查县| 荥经县| 清涧县| 太仓市| 德州市| 时尚| 古丈县| 黑河市| 鄂托克前旗| 和硕县| 定边县| 东乡县| 永宁县| 鹤山市| 明水县| 梁平县| 宁海县| 沾益县| 庆云县| 礼泉县| 白城市| 永平县| 营口市| 崇义县| 临潭县| 扶沟县| 深水埗区| 天门市| 合阳县| 诏安县| 武功县| 疏勒县| 临朐县| 丹凤县| 高雄市| 溧水县|