找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Diffeomorphisms of Elliptic 3-Manifolds; Sungbok Hong,John Kalliongis,J. Hyam Rubinstein Book 2012 Springer-Verlag Berlin Heidelberg 2012

[復(fù)制鏈接]
樓主: Daguerreotype
11#
發(fā)表于 2025-3-23 10:41:57 | 只看該作者
,Fünfter Teil: K?mpfe des Rechtsgefühls,d section, we will state our main results on the Smale Conjecture, and provide some historical context. In the final two sections, we discuss isometries of nonelliptic three-manifolds, and address the possibility of applying Perelman’s methods to the Smale Conjecture.
12#
發(fā)表于 2025-3-23 17:04:26 | 只看該作者
13#
發(fā)表于 2025-3-23 20:04:43 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:47:59 | 只看該作者
Book 2012mannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equi
16#
發(fā)表于 2025-3-24 07:21:40 | 只看該作者
https://doi.org/10.1007/978-3-662-62120-2uction of the elliptic three-manifolds that contain a one-sided geometrically incompressible Klein bottle; they are described as a family of manifolds .(., .) that depend on two integer parameters .. Section 4.2 is a section-by-section outline of the entire proof, which constitutes the remaining sections of the chapter.
17#
發(fā)表于 2025-3-24 11:53:15 | 只看該作者
Elliptic Three-Manifolds Containing One-Sided Klein Bottles,uction of the elliptic three-manifolds that contain a one-sided geometrically incompressible Klein bottle; they are described as a family of manifolds .(., .) that depend on two integer parameters .. Section 4.2 is a section-by-section outline of the entire proof, which constitutes the remaining sections of the chapter.
18#
發(fā)表于 2025-3-24 15:21:26 | 只看該作者
Sungbok Hong,John Kalliongis,J. Hyam RubinsteinIncludes supplementary material:
19#
發(fā)表于 2025-3-24 21:48:42 | 只看該作者
20#
發(fā)表于 2025-3-24 23:28:28 | 只看該作者
Diffeomorphisms and Embeddings of Manifolds, the manifolds involved are compact. Versions of these and related facts are developed for manifolds with boundary, as well as in the context of fiber-preserving diffeomorphisms and maps. The latter utilizes a modification of the exponential map, called the aligned exponential, adapted to the fibered structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄市| 论坛| 电白县| 诸城市| 台前县| 大洼县| 方正县| 潼南县| 平果县| 安康市| 松阳县| 永吉县| 咸阳市| 卢氏县| 藁城市| 开江县| 肃南| 苍南县| 南安市| 新巴尔虎右旗| 那曲县| 新郑市| 荔波县| 娱乐| 汝阳县| 莱阳市| 丽江市| 黄骅市| 井陉县| 林口县| 荆门市| 万宁市| 文昌市| 成都市| 渝中区| 神木县| 巩留县| 西乌珠穆沁旗| 濮阳市| 兰考县| 岳池县|