找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments in Language Theory; 6th International Co Masami Ito,Masafumi Toyama Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復制鏈接]
樓主: cerebral-cortex
11#
發(fā)表于 2025-3-23 11:29:00 | 只看該作者
Unary Language Operations and Their Nondeterministic State Complexityeterministic finite automata. In particular, we consider Boolean operations, concatenation, iteration, and λ-free iteration. Most of the bounds are tight in the exact number of states, i.e. the number is sufficient and necessary in the worst case. For the complementation of infinite languages a tigh
12#
發(fā)表于 2025-3-23 15:31:41 | 只看該作者
13#
發(fā)表于 2025-3-23 20:32:30 | 只看該作者
Roots and Powers of Regular Languagesive words . such that .. belongs to . for some . ≥ 1. There is a strong connection between the root and the powers of a regular language . namely, the .-power of . for an arbitrary finite set . with 0, 1, 2 ?, . is regular if and only if the root of . is finite. If the root is infinite then the .-po
14#
發(fā)表于 2025-3-23 23:15:30 | 只看該作者
Efficient Transformations from Regular Expressions to Finite Automataved the size of the resulting automaton from .(..) to .(.(log .).), and even .(. log .) for bounded alphabet size (where . is the size of the regular expression). A lower bound [.] shows this to be close to optimal, and also one of those constructions can be computed in optimal time [.].
15#
發(fā)表于 2025-3-24 02:57:19 | 只看該作者
Decision Problems for Linear and Circular Splicing Systemshe framework of formal language theory. In spite of a vast literature on splicing systems, briefly surveyed here, a few problems related to their computational power are still open. We intend to evidence how classical techniques and concepts in automata theory are a legitimate tool for investigating some of these problems.
16#
發(fā)表于 2025-3-24 07:13:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:11:46 | 只看該作者
Roots and Powers of Regular Languages .-power of . for an arbitrary finite set . with 0, 1, 2 ?, . is regular if and only if the root of . is finite. If the root is infinite then the .-power for most regular sets . is context-sensitive but not context-free. The stated property is decidable.
18#
發(fā)表于 2025-3-24 16:44:33 | 只看該作者
19#
發(fā)表于 2025-3-24 19:39:16 | 只看該作者
Wie Jungen mit Wrestling umgehennsional stochastic Turing machines (2-stm’s)”, and shows that for any . ≤ .(.) = .(.), .(.) space-bounded 2-ptm’s with bounded error are less powerful than .(.) space-bounded 2-stm’s with bounded error which start in nondeterministic mode, and make only one alternation between nondeterministic and probabilistic modes.
20#
發(fā)表于 2025-3-25 01:33:07 | 只看該作者
Rousseau, Schiller, Herder, Heinseved the size of the resulting automaton from .(..) to .(.(log .).), and even .(. log .) for bounded alphabet size (where . is the size of the regular expression). A lower bound [.] shows this to be close to optimal, and also one of those constructions can be computed in optimal time [.].
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-29 08:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
华亭县| 江都市| 开阳县| 江西省| 犍为县| 黔江区| 原平市| 文登市| 怀化市| 定兴县| 许昌县| 万山特区| 漯河市| 六盘水市| 紫阳县| 南皮县| 临沧市| 平阳县| 邵东县| 五指山市| 宁化县| 郯城县| 峨眉山市| 东乌| 宕昌县| 麻阳| 民勤县| 扎赉特旗| 昌邑市| 芦溪县| 湘乡市| 孝昌县| 米泉市| 鄯善县| 乌鲁木齐市| 孟村| 红河县| 醴陵市| 揭阳市| 耒阳市| 孟州市|