找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments in Language Theory; 6th International Co Masami Ito,Masafumi Toyama Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: cerebral-cortex
11#
發(fā)表于 2025-3-23 11:29:00 | 只看該作者
Unary Language Operations and Their Nondeterministic State Complexityeterministic finite automata. In particular, we consider Boolean operations, concatenation, iteration, and λ-free iteration. Most of the bounds are tight in the exact number of states, i.e. the number is sufficient and necessary in the worst case. For the complementation of infinite languages a tigh
12#
發(fā)表于 2025-3-23 15:31:41 | 只看該作者
13#
發(fā)表于 2025-3-23 20:32:30 | 只看該作者
Roots and Powers of Regular Languagesive words . such that .. belongs to . for some . ≥ 1. There is a strong connection between the root and the powers of a regular language . namely, the .-power of . for an arbitrary finite set . with 0, 1, 2 ?, . is regular if and only if the root of . is finite. If the root is infinite then the .-po
14#
發(fā)表于 2025-3-23 23:15:30 | 只看該作者
Efficient Transformations from Regular Expressions to Finite Automataved the size of the resulting automaton from .(..) to .(.(log .).), and even .(. log .) for bounded alphabet size (where . is the size of the regular expression). A lower bound [.] shows this to be close to optimal, and also one of those constructions can be computed in optimal time [.].
15#
發(fā)表于 2025-3-24 02:57:19 | 只看該作者
Decision Problems for Linear and Circular Splicing Systemshe framework of formal language theory. In spite of a vast literature on splicing systems, briefly surveyed here, a few problems related to their computational power are still open. We intend to evidence how classical techniques and concepts in automata theory are a legitimate tool for investigating some of these problems.
16#
發(fā)表于 2025-3-24 07:13:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:11:46 | 只看該作者
Roots and Powers of Regular Languages .-power of . for an arbitrary finite set . with 0, 1, 2 ?, . is regular if and only if the root of . is finite. If the root is infinite then the .-power for most regular sets . is context-sensitive but not context-free. The stated property is decidable.
18#
發(fā)表于 2025-3-24 16:44:33 | 只看該作者
19#
發(fā)表于 2025-3-24 19:39:16 | 只看該作者
Wie Jungen mit Wrestling umgehennsional stochastic Turing machines (2-stm’s)”, and shows that for any . ≤ .(.) = .(.), .(.) space-bounded 2-ptm’s with bounded error are less powerful than .(.) space-bounded 2-stm’s with bounded error which start in nondeterministic mode, and make only one alternation between nondeterministic and probabilistic modes.
20#
發(fā)表于 2025-3-25 01:33:07 | 只看該作者
Rousseau, Schiller, Herder, Heinseved the size of the resulting automaton from .(..) to .(.(log .).), and even .(. log .) for bounded alphabet size (where . is the size of the regular expression). A lower bound [.] shows this to be close to optimal, and also one of those constructions can be computed in optimal time [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾川县| 江孜县| 阳高县| 南靖县| 灵山县| 大余县| 太和县| 宾阳县| 青阳县| 扎赉特旗| 思茅市| 温宿县| 临澧县| 武陟县| 合肥市| 桦甸市| 扎赉特旗| 凤冈县| 义乌市| 平利县| 封丘县| 和平区| 古丈县| 金华市| 全州县| 庄浪县| 福海县| 牟定县| 开鲁县| 咸丰县| 临桂县| 宽城| 镇平县| 宣恩县| 重庆市| 修文县| 桂阳县| 嘉黎县| 水富县| 文水县| 常熟市|