找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developing Multi-Database Mining Applications; Animesh Adhikari,Pralhad Ramachandrarao,Witold Ped Book 2010 Springer-Verlag London 2010 Cl

[復(fù)制鏈接]
樓主: adulation
21#
發(fā)表于 2025-3-25 04:55:48 | 只看該作者
Introduction,that possess multiple databases. Global decisions made by such an organization might be more appropriate if they are based on the data distributed over the branches. Moreover, the number of such applications is increasing over time. In this chapter, we discuss some of the major challenges encountere
22#
發(fā)表于 2025-3-25 11:30:15 | 只看該作者
23#
發(fā)表于 2025-3-25 15:43:30 | 只看該作者
Mining Multiple Large Databases,y from multiple databases, it becomes necessary to improve mining multiple databases. In this chapter, we present an idea of multi-database mining by making use of local pattern analysis. We elaborate on the existing specialized and generalized techniques which are used for mining multiple large dat
24#
發(fā)表于 2025-3-25 15:55:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:46:12 | 只看該作者
26#
發(fā)表于 2025-3-26 01:56:39 | 只看該作者
27#
發(fā)表于 2025-3-26 07:18:36 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:49 | 只看該作者
Book 2010ss various issues regarding the systematic and efficient development of multi-database mining applications. It explains how systematically one could prepare data warehouses at different branches. As appropriate multi-database mining technique is essential to develop better applications. Also, the ef
29#
發(fā)表于 2025-3-26 13:01:26 | 只看該作者
1610-3947 ti-database mining applications.Multi-database mining has been recognized recently as an important and strategically essential area of research in data mining. In this book, we discuss various issues regarding the systematic and efficient development of multi-database mining applications. It explain
30#
發(fā)表于 2025-3-26 18:32:15 | 只看該作者
https://doi.org/10.1007/978-3-662-66456-8i-database mining techniques. Experimental results are provided and they are reported for both real-world and synthetic databases. They help us assess the effectiveness of the pipelined feedback model.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 21:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南宁市| 潮安县| 门头沟区| 封丘县| 东阿县| 寿光市| 图木舒克市| 乐昌市| 浦城县| 铅山县| 林甸县| 馆陶县| 晋州市| 芒康县| 嘉峪关市| 班玛县| 河南省| 特克斯县| 黄梅县| 吐鲁番市| 新蔡县| 金川县| 依兰县| 三亚市| 江城| 武宁县| 贵定县| 当涂县| 堆龙德庆县| 双鸭山市| 始兴县| 大姚县| 中卫市| 喀喇沁旗| 乡城县| 故城县| 宝清县| 乳山市| 宁乡县| 彭州市| 赫章县|