找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina Textbook 2014 Springer International Pub

[復(fù)制鏈接]
樓主: 烈酒
41#
發(fā)表于 2025-3-28 18:30:47 | 只看該作者
42#
發(fā)表于 2025-3-28 22:31:46 | 只看該作者
43#
發(fā)表于 2025-3-29 01:23:26 | 只看該作者
J. Vielkind,M. Schwab,F. AndersIn general form, self-sustained oscillatory systems with one degree of freedom are described by the equation . where . is a variable oscillating periodically, . and . are nonlinear functions characterizing the action of forces providing periodic self-sustained oscillations, and . is a vector of parameters ..
44#
發(fā)表于 2025-3-29 04:17:31 | 只看該作者
Dynamical Systems with One Degree of Freedom,Consider a class of autonomous continuous-time dynamical systems whose state at any time can be unambiguously given by a variable . and its derivative .. The phase space of such a system is the phase plane (., .). Thus, the phase space dimension is . = 2 and the number of degrees of freedom is ..
45#
發(fā)表于 2025-3-29 10:16:45 | 只看該作者
,The Anishchenko–Astakhov Oscillator of Chaotic Self-Sustained Oscillations,In general form, self-sustained oscillatory systems with one degree of freedom are described by the equation . where . is a variable oscillating periodically, . and . are nonlinear functions characterizing the action of forces providing periodic self-sustained oscillations, and . is a vector of parameters ..
46#
發(fā)表于 2025-3-29 12:18:53 | 只看該作者
https://doi.org/10.1007/978-3-319-06871-8Anishchenko-Astakhov Oscillator; Deterministic Chaos Theory; Nonlinear Dynamics Textbook; Oscillations
47#
發(fā)表于 2025-3-29 18:52:46 | 只看該作者
978-3-319-37852-7Springer International Publishing Switzerland 2014
48#
發(fā)表于 2025-3-29 20:56:11 | 只看該作者
Cesar Petri,Ralph Scorza,Chris Dardick natural sciences. It amounts to finding a law that enables us to define the future state of the system at a time . > .. when given some information on the system at the initial time ... Depending on the complexity of the system, this law can be deterministic or probabilistic, and it can describe ei
49#
發(fā)表于 2025-3-30 00:55:54 | 只看該作者
50#
發(fā)表于 2025-3-30 07:29:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万安县| 任丘市| 缙云县| 岗巴县| 长葛市| 荥阳市| 红桥区| 丽水市| 张掖市| 固安县| 什邡市| 延边| 忻州市| 华阴市| 噶尔县| 河北区| 香格里拉县| 延吉市| 神池县| 琼海市| 吉安县| 荆门市| 读书| 古蔺县| 仁化县| 阿荣旗| 县级市| 丰原市| 辽宁省| 日土县| 开平市| 榕江县| 江津市| 台前县| 遂溪县| 广东省| 山阳县| 阳曲县| 长顺县| 兴业县| 横山县|