找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Deterministic Chaos in General Relativity; David Hobill,Adrian Burd,Alan Coley Book 1994 Springer Science+Business Media New York 1994 cha

[復(fù)制鏈接]
樓主: SCOWL
51#
發(fā)表于 2025-3-30 09:55:00 | 只看該作者
Methods in Human Growth Geneticse density with the distance as a power law (the de Vaucouleurs’ density power law), the fractal dimension within the range 1 ≤ . ≤ 2, and the present range of uncertainty for the Hubble constant. The spatially homogeneous Friedmann model is discussed as a special case of the Tolman solution, and it
52#
發(fā)表于 2025-3-30 15:30:55 | 只看該作者
53#
發(fā)表于 2025-3-30 18:44:55 | 只看該作者
Introduction to Dynamical Systemserence for these proceedings. The qualitative behaviour of both linear and non-linear autonomous differential equations is discussed. Particular attention is given to Liapunov stability theory, periodic orbits, limit sets, structural stability, and bifurcation theory, leading up to higher order syst
54#
發(fā)表于 2025-3-30 21:05:02 | 只看該作者
55#
發(fā)表于 2025-3-31 01:46:38 | 只看該作者
On Defining Chaos in the Absence of Timee of initial values. Using the recent discovery that the sensitivity hypothesis is a logical consequence of the other two conditions we formulate a time-and-metric independent concept of chaos for foliations which implies the usual definition when the leaves are the orbits of a flow on a manifold. S
56#
發(fā)表于 2025-3-31 08:32:23 | 只看該作者
Chaos in the Case of Two Fixed Black Holesnate either at the black holes .. and .. (types (I) and (II)), or at infinity (type (III)). The limits of these three types of orbits are Cantor sets, defined by the unstable periodic orbits, that form a set of measure zero. In the case of particles with elliptic energy there are some stable periodi
57#
發(fā)表于 2025-3-31 11:40:40 | 只看該作者
58#
發(fā)表于 2025-3-31 16:09:59 | 只看該作者
59#
發(fā)表于 2025-3-31 19:46:10 | 只看該作者
60#
發(fā)表于 2025-4-1 00:07:25 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 05:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
色达县| 五常市| 古浪县| 金昌市| 尉氏县| 象山县| 隆子县| 海丰县| 敦化市| 陇南市| 云安县| 孙吴县| 华宁县| 芜湖县| 三原县| 松溪县| 贵德县| 新源县| 鹰潭市| 文昌市| 汾阳市| 阳谷县| 迁安市| 齐河县| 称多县| 绥滨县| 玉山县| 新源县| 清丰县| 汉寿县| 连平县| 岳阳市| 星子县| 阳泉市| 闽侯县| 门头沟区| 武陟县| 嵊州市| 清徐县| 昌黎县| 剑川县|