找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Determinants, Gr?bner Bases and Cohomology; Winfried Bruns,Aldo Conca,Matteo Varbaro Book 2022 Springer Nature Switzerland AG 2022 Determi

[復(fù)制鏈接]
樓主: 動(dòng)詞
11#
發(fā)表于 2025-3-23 13:15:16 | 只看該作者
Generations of Women HistoriansChapter 5 covers the existence of universal Gr?bner bases of determinantal ideals as far as they are known, namely maximal minors and 2-minors. The approach to the case of maximal minors is particularly simple.
12#
發(fā)表于 2025-3-23 17:44:05 | 只看該作者
,Gr?bner Bases, Initial Ideals and Initial Algebras,The first chapter gives a compact, but quite complete introduction to Gr?bner bases and Sagbi bases in general. The focus is on the structural aspects, namely, the use of Gr?bner and Sagbi degenerations in the transfer of homological and enumerative information from Stanley-Reisner and/or toric rings to those objects that degenerate to them.
13#
發(fā)表于 2025-3-23 20:57:37 | 只看該作者
14#
發(fā)表于 2025-3-24 00:35:41 | 只看該作者
,Determinantal Ideals and?the?Straightening Law,In this chapter gives a short introduction to standard bitableaux and the straightening law. This powerful technique is the key to structural properties of determinantal rings. But it is also of central importance for the computation of Gr?bner and Sagbi bases on the one hand and for the representation theoretic approach on the other.
15#
發(fā)表于 2025-3-24 06:18:50 | 只看該作者
,Universal Gr?bner Bases,Chapter 5 covers the existence of universal Gr?bner bases of determinantal ideals as far as they are known, namely maximal minors and 2-minors. The approach to the case of maximal minors is particularly simple.
16#
發(fā)表于 2025-3-24 09:21:20 | 只看該作者
Winfried Bruns,Aldo Conca,Matteo VarbaroCombines representation theoretic and geometric methods to study determinantal varieties.Explores the theoretical use of Gr?bner and Sagbi bases.Contains everything you always wanted to know about Cas
17#
發(fā)表于 2025-3-24 13:34:04 | 只看該作者
18#
發(fā)表于 2025-3-24 18:29:40 | 只看該作者
19#
發(fā)表于 2025-3-24 19:42:46 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
门源| 邹平县| 青阳县| 湖北省| 红原县| 东乌珠穆沁旗| 诸城市| 苍南县| 嘉峪关市| 阳谷县| 宁化县| 县级市| 临邑县| 始兴县| 营口市| 青岛市| 千阳县| 绥芬河市| 汶上县| 湟源县| 泾源县| 丽水市| 灵川县| 河间市| 肥西县| 灵宝市| 保山市| 安徽省| 株洲市| 荥经县| 临漳县| 平定县| 武清区| 环江| 偏关县| 鲜城| 武乡县| 家居| 桓仁| 镇安县| 岳普湖县|