找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Determinantal Rings; Winfried Bruns,Udo Vetter Book 1988 Springer-Verlag Berlin Heidelberg 1988 algebra.commutative algebra.commutative ri

[復(fù)制鏈接]
查看: 7534|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:45:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Determinantal Rings
編輯Winfried Bruns,Udo Vetter
視頻videohttp://file.papertrans.cn/270/269259/269259.mp4
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Determinantal Rings;  Winfried Bruns,Udo Vetter Book 1988 Springer-Verlag Berlin Heidelberg 1988 algebra.commutative algebra.commutative ri
描述Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.
出版日期Book 1988
關(guān)鍵詞algebra; commutative algebra; commutative ring; representation theory; ring theory
版次1
doihttps://doi.org/10.1007/BFb0080378
isbn_softcover978-3-540-19468-2
isbn_ebook978-3-540-39274-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書(shū)目名稱Determinantal Rings影響因子(影響力)




書(shū)目名稱Determinantal Rings影響因子(影響力)學(xué)科排名




書(shū)目名稱Determinantal Rings網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Determinantal Rings網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Determinantal Rings被引頻次




書(shū)目名稱Determinantal Rings被引頻次學(xué)科排名




書(shū)目名稱Determinantal Rings年度引用




書(shū)目名稱Determinantal Rings年度引用學(xué)科排名




書(shū)目名稱Determinantal Rings讀者反饋




書(shū)目名稱Determinantal Rings讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:20:53 | 只看該作者
Book 1988y material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.
地板
發(fā)表于 2025-3-22 04:43:40 | 只看該作者
0075-8434 pplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.978-3-540-19468-2978-3-540-39274-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
5#
發(fā)表于 2025-3-22 10:33:13 | 只看該作者
Algebras with straightening law on posets of minors,
6#
發(fā)表于 2025-3-22 16:42:42 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/d/image/269259.jpg
7#
發(fā)表于 2025-3-22 19:56:55 | 只看該作者
8#
發(fā)表于 2025-3-22 22:57:55 | 只看該作者
978-3-540-19468-2Springer-Verlag Berlin Heidelberg 1988
9#
發(fā)表于 2025-3-23 01:56:20 | 只看該作者
Determinantal Rings978-3-540-39274-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
10#
發(fā)表于 2025-3-23 07:28:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 11:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米脂县| 鸡西市| 衢州市| 宾川县| 武强县| 大兴区| 清原| 纳雍县| 鹤壁市| 伊川县| 古交市| 江西省| 肥乡县| 庆云县| 江孜县| 浙江省| 贵定县| 四子王旗| 施甸县| 昆山市| 彭山县| 巨鹿县| 增城市| 石渠县| 高碑店市| 遂昌县| 林口县| 衡阳县| 彰化市| 康保县| 榆社县| 郓城县| 汝州市| 根河市| 梁山县| 南城县| 蒙山县| 新龙县| 芒康县| 罗平县| 庄浪县|