找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Design of Experiments for Reinforcement Learning; Christopher Gatti Book 2015 Springer International Publishing Switzerland 2015 Kriging C

[復(fù)制鏈接]
查看: 55074|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:49:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Design of Experiments for Reinforcement Learning
編輯Christopher Gatti
視頻videohttp://file.papertrans.cn/269/268711/268711.mp4
概述Nominated by the Rensselaer Polytechnic Institute as an outstanding Ph.D. thesis.Explains reinforcement learning through a range of problems by exploring what affects reinforcement learning and what c
叢書名稱Springer Theses
圖書封面Titlebook: Design of Experiments for Reinforcement Learning;  Christopher Gatti Book 2015 Springer International Publishing Switzerland 2015 Kriging C
描述This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge.?The author approaches these entities using design of experiments not commonly employed to study machine learning methods.?The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems..
出版日期Book 2015
關(guān)鍵詞Kriging Covariance Functions; Reinforcement Learning Algorithm; Response Surface Metamodeling; Sequent
版次1
doihttps://doi.org/10.1007/978-3-319-12197-0
isbn_softcover978-3-319-38551-8
isbn_ebook978-3-319-12197-0Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Design of Experiments for Reinforcement Learning影響因子(影響力)




書目名稱Design of Experiments for Reinforcement Learning影響因子(影響力)學(xué)科排名




書目名稱Design of Experiments for Reinforcement Learning網(wǎng)絡(luò)公開度




書目名稱Design of Experiments for Reinforcement Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Design of Experiments for Reinforcement Learning被引頻次




書目名稱Design of Experiments for Reinforcement Learning被引頻次學(xué)科排名




書目名稱Design of Experiments for Reinforcement Learning年度引用




書目名稱Design of Experiments for Reinforcement Learning年度引用學(xué)科排名




書目名稱Design of Experiments for Reinforcement Learning讀者反饋




書目名稱Design of Experiments for Reinforcement Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:42:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:07:06 | 只看該作者
Friedr. Vieweg & Sohn Verlagskatalogcal experiments. These methods are primarily based on the experimental design and the creation of metamodels of response surfaces (i.e., surrogate models that could be use replacements for true computational models).
地板
發(fā)表于 2025-3-22 05:45:23 | 只看該作者
https://doi.org/10.1007/978-3-322-99062-4ect learning performance and what parameters are the most influential. The problem domains analyzed later in this work use very similar experimental methodologies and analysis procedures, and instead of repeating the methodology used for each problem domain, we present the methods used in this chapter.
5#
發(fā)表于 2025-3-22 10:56:52 | 只看該作者
Design of Experiments,cal experiments. These methods are primarily based on the experimental design and the creation of metamodels of response surfaces (i.e., surrogate models that could be use replacements for true computational models).
6#
發(fā)表于 2025-3-22 14:31:39 | 只看該作者
Methodology,ect learning performance and what parameters are the most influential. The problem domains analyzed later in this work use very similar experimental methodologies and analysis procedures, and instead of repeating the methodology used for each problem domain, we present the methods used in this chapter.
7#
發(fā)表于 2025-3-22 18:34:49 | 只看該作者
2190-5053 by exploring what affects reinforcement learning and what cThis thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge.?The author a
8#
發(fā)表于 2025-3-22 21:39:27 | 只看該作者
,Der Verstorbene als Gegenüber,ning process can be regarded as a process of trial-and-error, which is coupled with feedback provided from the environment that indicates the utility of the outcome. This learning method ultimately attempts to learn a mapping between actions and outcomes.
9#
發(fā)表于 2025-3-23 05:24:41 | 只看該作者
10#
發(fā)表于 2025-3-23 09:27:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 03:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清丰县| 滨海县| 申扎县| 六安市| 闸北区| 黑山县| 黄石市| 许昌市| 泰兴市| 蒲城县| 乳山市| 呼伦贝尔市| 陈巴尔虎旗| 子洲县| 汨罗市| 铁岭市| 五华县| 罗源县| 曲靖市| 霞浦县| 新竹市| 柳江县| 远安县| 沐川县| 海淀区| 望江县| 彭州市| 青龙| 晋州市| 分宜县| 静安区| 大洼县| 呼伦贝尔市| 绍兴县| 永定县| 宜春市| 鄂伦春自治旗| 清水县| 肃南| 利辛县| 延津县|