找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Design of Digital Chaotic Systems Updated by Random Iterations; Qianxue Wang,Simin Yu,Christophe Guyeux Book 2018 The Author(s) 2018 Digit

[復(fù)制鏈接]
樓主: 使入伍
11#
發(fā)表于 2025-3-23 12:07:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:00:19 | 只看該作者
SpringerBriefs in Applied Sciences and Technologyhttp://image.papertrans.cn/d/image/268699.jpg
13#
發(fā)表于 2025-3-23 18:42:20 | 只看該作者
14#
發(fā)表于 2025-3-23 23:26:04 | 只看該作者
https://doi.org/10.1007/978-3-030-27435-1In this chapter, we first recall the basic concept of real domain chaotic systems (RDCS) and integer domain chaotic systems (IDCS). Let . be a positive integer, . denote the set of Boolean numbers with its usual algebraic structure, and . the set of binary vectors of size ..
15#
發(fā)表于 2025-3-24 04:15:58 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:48 | 只看該作者
An Introduction to Digital Chaotic Systems Updated by Random Iterations,The objective of this first chapter is to introduce the so-called digital chaotic systems updated by random iterations and to present the latest developments in this field of research. Basic notations and terminologies are also provided for the sake of completeness.
17#
發(fā)表于 2025-3-24 11:17:30 | 只看該作者
18#
發(fā)表于 2025-3-24 16:35:57 | 只看該作者
19#
發(fā)表于 2025-3-24 20:36:08 | 只看該作者
Book 2018nal settings, and establishes a general framework for composing them. The contributors demonstrate that the associated state networks of digital chaotic systems are strongly connected. They then further prove that digital chaotic systems satisfy Devaney’s definition of chaos on the domain of finite
20#
發(fā)表于 2025-3-25 02:02:38 | 只看該作者
Michelle A. Harrison,Aurélie Joubertle gate array (FPGA) platform. As each operation of HDDCS is executed in the same fixed precision, no quantization loss occurs. Therefore, it provides a perfect solution to the dynamical degradation of digital chaos.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平安县| 南投县| 青冈县| 兴国县| 盘锦市| 武安市| 海门市| 边坝县| 南昌县| 东乡| 河北区| 青海省| 理塘县| 彰武县| 德化县| 南召县| 梓潼县| 伊宁县| 固原市| 贵定县| 松潘县| 政和县| 南平市| 凌源市| 东源县| 饶平县| 吉隆县| 江达县| 辛集市| 邓州市| 武汉市| 阿勒泰市| 柘荣县| 宁海县| 栖霞市| 安阳县| 且末县| 页游| 民和| 拉孜县| 屯昌县|