找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Design of Canals; P.K. Swamee,B.R. Chahar Book 2015 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer N

[復(fù)制鏈接]
樓主: cobble
31#
發(fā)表于 2025-3-26 21:22:08 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:31 | 只看該作者
https://doi.org/10.1007/978-3-642-66020-7quation is more appropriate. Direct analytic solution of the normal depth in natural/stable channel section is not possible, as the governing equation is implicit and it requires a tedious method of trial and error. Explicit expressions for normal depth associated with viscous flow in rectangular ch
33#
發(fā)表于 2025-3-27 06:09:01 | 只看該作者
Lelio Orci M.D.,Alain Perrelet M.D.erted in the unconstrained form through penalty function. A nondimensional parameter approach has been used to simplify the analysis. The dimensionless augmented function was minimized using a grid search algorithm. Using results of the optimization procedure and error minimization, close approximat
34#
發(fā)表于 2025-3-27 12:40:54 | 只看該作者
Leila Haaparanta,Jaakko Hintikkaion of optimization procedure in the wide application ranges of input variables. The analysis consists of conceiving an appropriate functional form and then minimizing errors between the optimal values and the computed values from the conceived function with coefficients. Particular cases like minim
35#
發(fā)表于 2025-3-27 15:48:19 | 只看該作者
Semantic Content and Cognitive Sense for triangular, rectangular, trapezoidal, parabolic, and power law canals. The chapter also includes special cases, for example, minimum seepage loss sections without drainage layer and minimum seepage loss sections with drainage layer at shallow depth. The resultant explicit equations for the desi
36#
發(fā)表于 2025-3-27 19:57:55 | 只看該作者
Semantic Content and Cognitive Sensectangular, and trapezoidal shapes. The optimal dimensions for any shape can be obtained from proposed equations along with tabulated section shape coefficients. The optimal design equations are in explicit form and result into optimal dimensions of a canal in single-step computations that avoid the
37#
發(fā)表于 2025-3-27 23:11:48 | 只看該作者
38#
發(fā)表于 2025-3-28 05:24:59 | 只看該作者
39#
發(fā)表于 2025-3-28 09:01:15 | 只看該作者
Objective Functions,nd scour. Using Lacey’s equations for stable channel geometry and using geometric programming, an objective function for stable alluvial channels can be synthesized. Thus, this chapter formulates objective functions for rigid boundary canals and mobile boundary (natural) canals.
40#
發(fā)表于 2025-3-28 11:22:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新化县| 宁德市| 台南市| 鄂托克前旗| 静海县| 兴山县| 宣化县| 镇坪县| 清水县| 兴城市| 乌审旗| 伊春市| 肇源县| 绍兴县| 永仁县| 三河市| 安岳县| 襄汾县| 铜山县| 保定市| 泸西县| 延川县| 民勤县| 张家口市| 阿拉善盟| 屏东县| 沿河| 泰安市| 阳原县| 怀仁县| 巢湖市| 彭山县| 改则县| 环江| 交城县| 开平市| 聂荣县| 忻州市| 肇东市| 克山县| 河津市|