找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Descriptional Complexity of Formal Systems; 18th IFIP WG 1.2 Int Cezar Campeanu,Florin Manea,Jeffrey Shallit Conference proceedings 2016 IF

[復(fù)制鏈接]
樓主: 惡夢
21#
發(fā)表于 2025-3-25 05:30:47 | 只看該作者
Michael Flecker,Teddy Y. H. Simcerns the structure of the minimum automaton accepting the language under consideration. It is also observed that there exist reduced reversible automata which are not minimal, in the sense that all the automata obtained by merging some of their equivalent states are irreversible. Furthermore, it is
22#
發(fā)表于 2025-3-25 08:24:36 | 只看該作者
23#
發(fā)表于 2025-3-25 12:45:51 | 只看該作者
Hwee Hwang Sim,Shiang Swee Grace Liowwer bounds for the size of the minimal deterministic finite automaton (DFA) needed for the radius . prefix distance neighbourhood of an . state DFA that recognizes, respectively, a finite, a prefix-closed and a prefix-free language. For prefix-closed languages the lower bound automata are defined ov
24#
發(fā)表于 2025-3-25 18:16:29 | 只看該作者
Ma?gorzata Oleszkiewicz-PeralbaZemek in 2012 [.]. Second, we close a study started by ?erno and Mráz in 2010 [.] by proving that a clearing restarting automaton using contexts of length two can accept a binary non-context-free language.
25#
發(fā)表于 2025-3-25 22:28:46 | 只看該作者
26#
發(fā)表于 2025-3-26 01:45:14 | 只看該作者
Unary Self-verifying Symmetric Difference Automata,We show that there is a family of languages . which can always be represented non-trivially by unary SV-XNFA. We also consider the descriptional complexity of unary SV-XNFA, giving an upper and lower bound for state complexity.
27#
發(fā)表于 2025-3-26 07:40:27 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:03 | 只看該作者
Cezar Campeanu,Florin Manea,Jeffrey ShallitIncludes supplementary material:
29#
發(fā)表于 2025-3-26 16:14:38 | 只看該作者
30#
發(fā)表于 2025-3-26 20:24:00 | 只看該作者
https://doi.org/10.1007/978-3-319-41114-9automata theory; context free languages; formal languages; regular languages; turing machines; automata e
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西乌珠穆沁旗| 凤庆县| 山丹县| 晋宁县| 祁连县| 仁怀市| 湘西| 凤庆县| 乡城县| 十堰市| 揭西县| 临泉县| 肃宁县| 江安县| 牡丹江市| 延边| 台州市| 佛山市| 濉溪县| 荣昌县| 文安县| 颍上县| 尤溪县| 清远市| 米脂县| 宝山区| 兴化市| 章丘市| 安乡县| 洱源县| 大兴区| 屏南县| 深圳市| 赫章县| 紫云| 昌都县| 新郑市| 凤山县| 荥阳市| 桐柏县| 东乌珠穆沁旗|