找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Descriptional Complexity of Formal Systems; 18th IFIP WG 1.2 Int Cezar Campeanu,Florin Manea,Jeffrey Shallit Conference proceedings 2016 IF

[復制鏈接]
樓主: 惡夢
21#
發(fā)表于 2025-3-25 05:30:47 | 只看該作者
Michael Flecker,Teddy Y. H. Simcerns the structure of the minimum automaton accepting the language under consideration. It is also observed that there exist reduced reversible automata which are not minimal, in the sense that all the automata obtained by merging some of their equivalent states are irreversible. Furthermore, it is
22#
發(fā)表于 2025-3-25 08:24:36 | 只看該作者
23#
發(fā)表于 2025-3-25 12:45:51 | 只看該作者
Hwee Hwang Sim,Shiang Swee Grace Liowwer bounds for the size of the minimal deterministic finite automaton (DFA) needed for the radius . prefix distance neighbourhood of an . state DFA that recognizes, respectively, a finite, a prefix-closed and a prefix-free language. For prefix-closed languages the lower bound automata are defined ov
24#
發(fā)表于 2025-3-25 18:16:29 | 只看該作者
Ma?gorzata Oleszkiewicz-PeralbaZemek in 2012 [.]. Second, we close a study started by ?erno and Mráz in 2010 [.] by proving that a clearing restarting automaton using contexts of length two can accept a binary non-context-free language.
25#
發(fā)表于 2025-3-25 22:28:46 | 只看該作者
26#
發(fā)表于 2025-3-26 01:45:14 | 只看該作者
Unary Self-verifying Symmetric Difference Automata,We show that there is a family of languages . which can always be represented non-trivially by unary SV-XNFA. We also consider the descriptional complexity of unary SV-XNFA, giving an upper and lower bound for state complexity.
27#
發(fā)表于 2025-3-26 07:40:27 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:03 | 只看該作者
Cezar Campeanu,Florin Manea,Jeffrey ShallitIncludes supplementary material:
29#
發(fā)表于 2025-3-26 16:14:38 | 只看該作者
30#
發(fā)表于 2025-3-26 20:24:00 | 只看該作者
https://doi.org/10.1007/978-3-319-41114-9automata theory; context free languages; formal languages; regular languages; turing machines; automata e
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
芦溪县| 天津市| 虎林市| 朝阳县| 平谷区| 三门峡市| 尖扎县| 玉门市| 吉隆县| 吕梁市| 方城县| 武功县| 西乌珠穆沁旗| 昌黎县| 望城县| 黄龙县| 读书| 乌拉特中旗| 达日县| 泰和县| 镇康县| 涪陵区| 达日县| 林周县| 衡水市| 盐亭县| 滦平县| 淮北市| 台州市| 都江堰市| 汾西县| 锦州市| 漳平市| 崇义县| 中方县| 定日县| 惠州市| 油尖旺区| 景谷| 曲水县| 分宜县|