找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Descriptional Complexity of Formal Systems; 20th IFIP WG 1.02 In Stavros Konstantinidis,Giovanni Pighizzini Conference proceedings 2018 IFI

[復(fù)制鏈接]
樓主: 熱情美女
31#
發(fā)表于 2025-3-26 22:03:20 | 只看該作者
32#
發(fā)表于 2025-3-27 05:11:56 | 只看該作者
On the Grammatical Complexity of Finite Languages,y measure and varying the grammar type. In both of these cases, we develop an almost complete picture, which gives new and interesting insights into the old topic of grammatical production complexity.
33#
發(fā)表于 2025-3-27 05:45:40 | 只看該作者
34#
發(fā)表于 2025-3-27 10:31:22 | 只看該作者
35#
發(fā)表于 2025-3-27 15:46:06 | 只看該作者
36#
發(fā)表于 2025-3-27 19:48:09 | 只看該作者
Nikita V. Kitov,Mikhail V. Volkova uniform density function and holds under the assumption that the formal series defining the model is recognized by a weighted finite state automaton with two primitive components having equal dominant eigenvalue.
37#
發(fā)表于 2025-3-28 01:50:49 | 只看該作者
G. Manara,S. Mugnaini,P. Nepa,A. A. Serraon can be transformed into an halting linear-time equivalent one. We also obtain polynomial transformations into related models, including weight-reducing Hennie machines, and we show exponential gaps for converse transformations in the deterministic case.
38#
發(fā)表于 2025-3-28 05:29:24 | 只看該作者
39#
發(fā)表于 2025-3-28 08:25:42 | 只看該作者
Word Problem Languages for Free Inverse Monoids,ree languages) and ET0L; that the co-word problem of the free inverse monoid of rank 1 is context-free; and that the word problem of a free inverse monoid of rank greater than 1 is not poly-context-free.
40#
發(fā)表于 2025-3-28 11:49:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭平县| 巩留县| 凌海市| 招远市| 神农架林区| 临朐县| 明水县| 新平| 上虞市| 宝坻区| 邻水| 新乡市| 石景山区| 绥宁县| 津南区| 闽侯县| 武冈市| 临汾市| 新余市| 吉木乃县| 阿坝| 封丘县| 沅江市| 略阳县| 乌拉特中旗| 普陀区| 阳江市| 得荣县| 伊宁县| 遵义市| 嘉黎县| 轮台县| 收藏| 新疆| 夏河县| 三台县| 江安县| 西畴县| 平塘县| 望谟县| 周至县|