找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deployable Machine Learning for Security Defense; Second International Gang Wang,Arridhana Ciptadi,Ali Ahmadzadeh Conference proceedings 20

[復(fù)制鏈接]
樓主: 遠見
21#
發(fā)表于 2025-3-25 06:19:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:49:32 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:41 | 只看該作者
https://doi.org/10.1007/978-3-658-45233-9. We evaluate the performance of . in terms of quality of data generated, by training it on both a simulated dataset and a real network traffic data set. Finally, to answer the question—can real network traffic data be substituted with synthetic data to train models of comparable accuracy?—we train
24#
發(fā)表于 2025-3-25 16:36:03 | 只看該作者
25#
發(fā)表于 2025-3-25 21:08:55 | 只看該作者
Rameshnath Krishnasamy,Peter Vistisenundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection..The performance of . evaluated on over 158k apps demonstrates that, while simple, our approach is effective
26#
發(fā)表于 2025-3-26 00:42:34 | 只看該作者
Mariana Carvalho,Daniel Rocha,Vítor Carvalhor limitation of the first attack scenario is that a simple pre-processing step can remove the perturbations before classification. For the second attack scenario, it is hard to maintain the original malware’s executability and functionality. In this work, we provide literature review on existing mal
27#
發(fā)表于 2025-3-26 05:17:30 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:36 | 只看該作者
STAN: Synthetic Network Traffic Generation with Generative Neural Models. We evaluate the performance of . in terms of quality of data generated, by training it on both a simulated dataset and a real network traffic data set. Finally, to answer the question—can real network traffic data be substituted with synthetic data to train models of comparable accuracy?—we train
29#
發(fā)表于 2025-3-26 16:21:32 | 只看該作者
Few-Sample Named Entity Recognition for Security Vulnerability Reports by?Fine-Tuning Pre-trained Lalar, we investigate the performance of fine-tuning several state-of-the-art pre-trained language models on our small training dataset. The results show that with pre-trained language models and carefully tuned hyperparameters, we have reached or slightly outperformed the state-of-the-art system?[.]
30#
發(fā)表于 2025-3-26 18:11:50 | 只看該作者
: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Represeundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection..The performance of . evaluated on over 158k apps demonstrates that, while simple, our approach is effective
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 09:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定南县| 汝阳县| 南丹县| 三亚市| 克拉玛依市| 新泰市| 辉县市| 舒城县| 灵武市| 禄丰县| 秦安县| 彭泽县| 青阳县| 融水| 方城县| 闽侯县| 库尔勒市| 博白县| 铁力市| 巧家县| 社旗县| 隆尧县| 永善县| 深州市| 双牌县| 鹤岗市| 桐梓县| 临沧市| 红河县| 雷波县| 铜川市| 桐梓县| 曲阳县| 赤水市| 册亨县| 隆化县| 高清| 云和县| 宜丰县| 绥宁县| 荆州市|