找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dependence in Probability and Statistics; A Survey of Recent R Ernst Eberlein,Murad S. Taqqu Book 1986 Springer Science+Business Media New

[復(fù)制鏈接]
樓主: Helmet
31#
發(fā)表于 2025-3-26 20:57:06 | 只看該作者
32#
發(fā)表于 2025-3-27 02:58:35 | 只看該作者
H. Quintard,J.-C. Orban,C. Ichai integers . = ...,?1, 0.1,... . .(.) is a stationary renewal reward process with large inter-renewal intervals, while .(.) is a non-stationary process that takes the value zero except at some rare instants . where it achieves extremely high values.
33#
發(fā)表于 2025-3-27 08:18:21 | 只看該作者
Drugs and the Inheritance of Behaviorince the applications are diverse, references are scattered in the literature. The purpose of this bibliographical guide is to . many of the important references to the subject. Relevant references to some related topics are also included. Although this is definitely not a comprehensive bibliography
34#
發(fā)表于 2025-3-27 10:24:24 | 只看該作者
35#
發(fā)表于 2025-3-27 14:02:10 | 只看該作者
https://doi.org/10.1007/978-3-030-64904-3 a result that nowadays often would be called a functional central limit theorem (FCLT). At present the term “invariance principle” generally stands as a synonym for an approximation theorem: A given process, such as a partial sum process, an empirical process, an extremal process, a U-statistic, et
36#
發(fā)表于 2025-3-27 18:18:44 | 只看該作者
Semantic Digital Twins for Retail Logisticsor martingales starting with a martingale version of Lindeberg’s proof of the classical CLT and going up to FCLT’s for continuous time local martingales known through the work of Rebolledo, Liptser and Shiryayev, and Helland.
37#
發(fā)表于 2025-3-28 00:58:35 | 只看該作者
https://doi.org/10.1007/978-3-030-88662-2 of the partial sum process S(t) = Σ. x.. Essentially three types of results are known: strong laws of large numbers (SLLNs), central limit theorems (CLTs) and laws of the iterated logarithm (LILs). All three of them as well as a number of refinements such as the functional versions of the last two
38#
發(fā)表于 2025-3-28 03:42:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:42 | 只看該作者
40#
發(fā)表于 2025-3-28 10:59:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华蓥市| 老河口市| 谷城县| 泾源县| 东乡| 宜兰市| 顺义区| 长沙市| 大名县| 元朗区| 林西县| 鹿泉市| 平乐县| 夏河县| 胶州市| 南郑县| 通许县| 宽城| 鲁甸县| 鄂托克前旗| 泾源县| 阆中市| 庄河市| 宁波市| 丰台区| 易门县| 赫章县| 于田县| 蒙城县| 福泉市| 环江| 沛县| 松溪县| 桂东县| 犍为县| 镇江市| 太保市| 渝北区| 伽师县| 塔河县| 黄龙县|