找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Delay-Coupled Complex Systems; and Applications to Valentin Flunkert Book 2011 Springer-Verlag Berlin Heidelberg 2011 Complex networks.Con

[復(fù)制鏈接]
樓主: 次要
51#
發(fā)表于 2025-3-30 09:37:08 | 只看該作者
52#
發(fā)表于 2025-3-30 12:53:21 | 只看該作者
53#
發(fā)表于 2025-3-30 19:32:51 | 只看該作者
IntroductionDelays are ubiquitous in nature and occur, for instance, in coupled systems, in biological processes, neural systems, or in control problems. Time delays arise in these systems due to finite signal propagation and processing speeds, latency effects or are introduced deliberately via external control loops.
54#
發(fā)表于 2025-3-31 00:36:54 | 只看該作者
CounterexampleIn this section we will construct a counterexample to the odd-number theorem, i.e., a system with an odd-number orbit, where the orbit can be stabilized by time-delayed feedback control. The counterexample consists of the normal form of a subcritical Hopf bifurcation
55#
發(fā)表于 2025-3-31 03:38:56 | 只看該作者
Lang Kobayashi Laser EquationsCoupled semiconductor lasers will be the main application of chaos synchronization that we consider. We will therefore now introduce the dynamical laser equations
56#
發(fā)表于 2025-3-31 07:55:19 | 只看該作者
Necessary Conditions for Synchronization of LasersPerfect synchronization is only possible if the SM is invariant. There are other forms of . such as . occurring, for instance, when the systems are non-identical, but we will restrict our analysis to perfect synchronization and a very weak form of generalized synchronization in lasers.
57#
發(fā)表于 2025-3-31 12:33:03 | 只看該作者
BubblingThe stability of a synchronized state is determined by the largest transversal Lyapunov exponent (TLE) arising from the particular dynamics in the SM and the variational equation associated with transverse perturbations, as we have discussed in ..
58#
發(fā)表于 2025-3-31 14:48:54 | 只看該作者
59#
發(fā)表于 2025-3-31 18:04:50 | 只看該作者
60#
發(fā)表于 2025-4-1 00:51:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 01:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新营市| 佛冈县| 泰安市| 宣威市| 尼木县| 寿宁县| 舞钢市| 黔南| 昭觉县| 泾川县| 沾化县| 临清市| 克东县| 华池县| 潢川县| 花莲市| 新营市| 尼玛县| 特克斯县| 京山县| 东城区| 垫江县| 广河县| 成都市| 丁青县| 贵南县| 阿拉尔市| 绩溪县| 莱芜市| 全南县| 揭西县| 安徽省| 揭阳市| 镇江市| 肇庆市| 泌阳县| 冀州市| 苏尼特右旗| 宜丰县| 新乡县| 宜州市|