找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Delay Differential Equations and Applications; Proceedings of the N O. Arino,M.L. Hbid,E. Ait Dads Conference proceedings 20061st edition S

[復制鏈接]
樓主: Considerate
11#
發(fā)表于 2025-3-23 13:19:56 | 只看該作者
https://doi.org/10.1007/978-3-642-80490-8unctional differential equations from finite to infinite dimensions, one of the first and main examples which comes to mind is the case of evolution equations combining diffusion and delayed reaction. This is the situation in the first example that we are going to present, which is a model proposed
12#
發(fā)表于 2025-3-23 16:28:35 | 只看該作者
,Alphabetisches Fachw?rterverzeichnis,al number. . ([–., 0],.) denotes the space of continuous functions from [–., 0] to . with the uniform convergence topology and we will use simply .. for . ([–., 0],.). For . ∈ .([–., .],.), . > 0 and . ∈ [0, .], let .. denote the element of .. defined by ..(θ) = .(. + θ), –. ≤ θ ≤ 0.
13#
發(fā)表于 2025-3-23 18:41:07 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:49 | 只看該作者
https://doi.org/10.1007/978-3-322-92326-4s in various disease states, with the sojourn time in a state being exponentially distributed. Time delays are introduced to model constant sojourn times in a state, for example, the infective or immune state. Models then become delay-differential and/or integral equations. For a review of some epid
15#
發(fā)表于 2025-3-24 02:40:47 | 只看該作者
16#
發(fā)表于 2025-3-24 08:52:46 | 只看該作者
,Alphabetisches Fachw?rterverzeichnis,Delay differential equations, differential integral equations and functional differential equations have been studied for at least 200 years (see E. Schmitt (1911) for references and some properties of linear equations). Some of the early work originated from problems in geometry and number theory.
17#
發(fā)表于 2025-3-24 12:27:02 | 只看該作者
18#
發(fā)表于 2025-3-24 16:35:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:40:11 | 只看該作者
20#
發(fā)表于 2025-3-25 00:49:27 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灵台县| 财经| 扬中市| 鄄城县| 榕江县| 克东县| 三台县| 东港市| 柘城县| 容城县| 云浮市| 平顶山市| 麻城市| 金华市| 邯郸县| 铁岭市| 墨脱县| 天镇县| 天全县| 和硕县| 兴化市| 鹰潭市| 墨江| 平潭县| 越西县| 阿勒泰市| 丰宁| 阳谷县| 石门县| 蓬溪县| 甘德县| 临江市| 仁怀市| 佛冈县| 容城县| 鲁甸县| 开阳县| 黎川县| 全椒县| 双牌县| 绥芬河市|