找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Degenerate Diffusions; Wei-Ming Ni,L. A. Peletier,J. L. Vazquez Conference proceedings 1993 Springer-Verlag New York, Inc. 1993 bounded me

[復(fù)制鏈接]
查看: 52104|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:23:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Degenerate Diffusions
編輯Wei-Ming Ni,L. A. Peletier,J. L. Vazquez
視頻videohttp://file.papertrans.cn/265/264860/264860.mp4
叢書名稱The IMA Volumes in Mathematics and its Applications
圖書封面Titlebook: Degenerate Diffusions;  Wei-Ming Ni,L. A. Peletier,J. L. Vazquez Conference proceedings 1993 Springer-Verlag New York, Inc. 1993 bounded me
描述This IMA Volume in Mathematics and its Applications DEGENERATE DIFFUSIONS is based on the proceedings of a workshop which was an integral part of the 1990- 91 IMA program on "Phase Transitions and Free Boundaries". The aim of this workshop was to provide some focus in the study of degenerate diffusion equations, and by involving scientists and engineers as well as mathematicians, to keep this focus firmly linked to concrete problems. We thank Wei-Ming Ni, L.A. Peletier and J.L. Vazquez for organizing the meet- ing. We especially thank Wei-Ming Ni for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the National Science Foun- dation, and the Office of Naval Research. A vner Friedman Willard Miller, Jr. PREFACE This volume is the proceedings of the IMA workshop "Degenerate Diffusions" held at the University of Minnesota from May 13 to May 18, 1991.
出版日期Conference proceedings 1993
關(guān)鍵詞bounded mean oscillation; differential equation; manifold; partial differential equation
版次1
doihttps://doi.org/10.1007/978-1-4612-0885-3
isbn_softcover978-1-4612-6935-9
isbn_ebook978-1-4612-0885-3Series ISSN 0940-6573 Series E-ISSN 2198-3224
issn_series 0940-6573
copyrightSpringer-Verlag New York, Inc. 1993
The information of publication is updating

書目名稱Degenerate Diffusions影響因子(影響力)




書目名稱Degenerate Diffusions影響因子(影響力)學(xué)科排名




書目名稱Degenerate Diffusions網(wǎng)絡(luò)公開度




書目名稱Degenerate Diffusions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Degenerate Diffusions被引頻次




書目名稱Degenerate Diffusions被引頻次學(xué)科排名




書目名稱Degenerate Diffusions年度引用




書目名稱Degenerate Diffusions年度引用學(xué)科排名




書目名稱Degenerate Diffusions讀者反饋




書目名稱Degenerate Diffusions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:15:47 | 只看該作者
The IMA Volumes in Mathematics and its Applicationshttp://image.papertrans.cn/d/image/264860.jpg
地板
發(fā)表于 2025-3-22 04:52:09 | 只看該作者
5#
發(fā)表于 2025-3-22 10:13:21 | 只看該作者
6#
發(fā)表于 2025-3-22 16:56:51 | 只看該作者
https://doi.org/10.1007/978-3-658-09351-8In this short note, we prove a BMO bound on eigenfunctions of the Laplacian on Riemannian manifold. This bound is closely related to a conjecture on the Hausdorff measure of the nodal set.
7#
發(fā)表于 2025-3-22 18:16:53 | 只看該作者
https://doi.org/10.1007/978-3-531-93471-6Let Ω0 be a compact region of the three-dimensional euclidean space R3. Assume that Ω:= R3 — Ω0 is filled with a viscous incompressible fluid whose motion m is governed by the Navier-Stokes equations.
8#
發(fā)表于 2025-3-22 21:45:11 | 只看該作者
https://doi.org/10.1007/978-3-531-93471-6We discuss on recent results concerning the asymptotics near blow-up of nonnega-tive solutions of.where . (.)=.. with p > 1 or . (.) ., and . 0(.) is continuous, nonnegative and bounded. AMS(MOS) subject classifications. 35B40, 35K55, 35K57
9#
發(fā)表于 2025-3-23 02:31:30 | 只看該作者
10#
發(fā)表于 2025-3-23 08:06:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 06:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒲江县| 宁夏| 大埔县| 鄂托克前旗| 乐东| 福州市| 枣强县| 新乐市| 乡城县| 红安县| 马鞍山市| 临安市| 兴隆县| 纳雍县| 灵璧县| 仲巴县| 宣武区| 太康县| 彭阳县| 萍乡市| 阆中市| 灵寿县| 固阳县| 梅河口市| 巴塘县| 贵州省| 三都| 黄浦区| 鹤庆县| 新竹县| 吴忠市| 赞皇县| 呼图壁县| 北安市| 临江市| 南城县| 青岛市| 额尔古纳市| 新建县| 高邑县| 北宁市|