找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles; Yuecheng Li,Hongwen He Book 2022 Springer Nature Switzer

[復(fù)制鏈接]
查看: 20544|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:28:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles
編輯Yuecheng Li,Hongwen He
視頻videohttp://file.papertrans.cn/265/264661/264661.mp4
叢書(shū)名稱Synthesis Lectures on Advances in Automotive Technology
圖書(shū)封面Titlebook: Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles;  Yuecheng Li,Hongwen He Book 2022 Springer Nature Switzer
描述The urgent need for vehicle electrification and improvement in fuel efficiency has gained increasing attention worldwide. Regarding this concern, the solution of hybrid vehicle systems has proven its value from academic research and industry applications, where energy management plays a key role in taking full advantage of hybrid electric vehicles (HEVs). There are many well-established energy management approaches, ranging from rules-based strategies to optimization-based methods, that can provide diverse options to achieve higher fuel economy performance. However, the research scope for energy management is still expanding with the development of intelligent transportation systems and the improvement in onboard sensing and computing resources. Owing to the boom in machine learning, especially deep learning and deep reinforcement learning (DRL), research on learning-based energy management strategies (EMSs) is gradually gaining more momentum. They have shown great promise in not onlybeing capable of dealing with big data, but also in generalizing previously learned rules to new scenarios without complex manually tunning. Focusing on learning-based energy management with DRL as the
出版日期Book 2022
版次1
doihttps://doi.org/10.1007/978-3-031-79206-9
isbn_softcover978-3-031-79194-9
isbn_ebook978-3-031-79206-9Series ISSN 2576-8107 Series E-ISSN 2576-8131
issn_series 2576-8107
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles影響因子(影響力)




書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles被引頻次




書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles被引頻次學(xué)科排名




書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles年度引用




書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles年度引用學(xué)科排名




書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles讀者反饋




書(shū)目名稱Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:45:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:01:09 | 只看該作者
Learning of EMSs in Continuous State Space-Discrete Action Space, and efficient learning algorithm in discrete action spaces. Therefore, to address energy management problems with continuous state—discrete action spaces, this chapter describes an energy management method based on deep Q-learning, and further conduct research on its learning stability, optimizatio
地板
發(fā)表于 2025-3-22 05:47:02 | 只看該作者
5#
發(fā)表于 2025-3-22 09:50:49 | 只看該作者
2576-8107 ut also in generalizing previously learned rules to new scenarios without complex manually tunning. Focusing on learning-based energy management with DRL as the978-3-031-79194-9978-3-031-79206-9Series ISSN 2576-8107 Series E-ISSN 2576-8131
6#
發(fā)表于 2025-3-22 15:31:53 | 只看該作者
7#
發(fā)表于 2025-3-22 20:50:22 | 只看該作者
8#
發(fā)表于 2025-3-22 23:06:48 | 只看該作者
Michael Hubbard,Marisol Smith,Renu Kohliion for the DRL-based EMS is described in this chapter. Because all DRL-based EMSs described in this book are represented by DNNs, they share the same hardware deployment procedure. The DRL-based EMS in Chapter 3 is utilized here for the illustration.
9#
發(fā)表于 2025-3-23 02:49:26 | 只看該作者
Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles
10#
發(fā)表于 2025-3-23 06:40:26 | 只看該作者
2576-8107 cern, the solution of hybrid vehicle systems has proven its value from academic research and industry applications, where energy management plays a key role in taking full advantage of hybrid electric vehicles (HEVs). There are many well-established energy management approaches, ranging from rules-b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姜堰市| 云龙县| 山东省| 马尔康县| 琼中| 新宁县| 红安县| 通海县| 大名县| 西安市| 公主岭市| 翁源县| 什邡市| 甘德县| 秦安县| 富平县| 宜兰县| 汪清县| 始兴县| 莫力| 天峨县| 繁昌县| 和龙市| 东台市| 遂宁市| 剑川县| 云南省| 绍兴市| 岚皋县| 河曲县| 鹤峰县| 库尔勒市| 河池市| 固始县| 安龙县| 玉田县| 宜兴市| 东兰县| 金山区| 平乡县| 牙克石市|