找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning; Frontiers of Artific Mohit Sewak Book 2019 Springer Nature Singapore Pte Ltd. 2019 Reinforcement Learning.Deep

[復制鏈接]
查看: 12825|回復: 49
樓主
發(fā)表于 2025-3-21 20:06:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Reinforcement Learning
副標題Frontiers of Artific
編輯Mohit Sewak
視頻videohttp://file.papertrans.cn/265/264655/264655.mp4
概述Presents comprehensive insights into advanced deep learning concepts like the ‘hard attention mechanism’.Introduces algorithms that are slated to become the future of artificial intelligence.Allows re
圖書封面Titlebook: Deep Reinforcement Learning; Frontiers of Artific Mohit Sewak Book 2019 Springer Nature Singapore Pte Ltd. 2019 Reinforcement Learning.Deep
描述.This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code...This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘a(chǎn)dvanced artificial intelligence’ for creating real-world applications and game-winning algorithms..
出版日期Book 2019
關(guān)鍵詞Reinforcement Learning; Deep Learning; Artificial Intelligence; Deep Q Learning; A3C; Actor-Critic; Deep M
版次1
doihttps://doi.org/10.1007/978-981-13-8285-7
isbn_softcover978-981-13-8287-1
isbn_ebook978-981-13-8285-7
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Deep Reinforcement Learning影響因子(影響力)




書目名稱Deep Reinforcement Learning影響因子(影響力)學科排名




書目名稱Deep Reinforcement Learning網(wǎng)絡(luò)公開度




書目名稱Deep Reinforcement Learning網(wǎng)絡(luò)公開度學科排名




書目名稱Deep Reinforcement Learning被引頻次




書目名稱Deep Reinforcement Learning被引頻次學科排名




書目名稱Deep Reinforcement Learning年度引用




書目名稱Deep Reinforcement Learning年度引用學科排名




書目名稱Deep Reinforcement Learning讀者反饋




書目名稱Deep Reinforcement Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:44 | 只看該作者
Mathematical and Algorithmic Understanding of Reinforcement Learning, is imperative to understand these concepts before going forward to discussing some advanced topics ahead. Finally, we will cover the algorithms like value iteration and policy iteration for solving the MDP.
板凳
發(fā)表于 2025-3-22 01:56:27 | 只看該作者
地板
發(fā)表于 2025-3-22 07:12:40 | 只看該作者
5#
發(fā)表于 2025-3-22 10:55:02 | 只看該作者
6#
發(fā)表于 2025-3-22 16:45:33 | 只看該作者
7#
發(fā)表于 2025-3-22 19:22:01 | 只看該作者
Deutschlands europ?isierte Au?enpolitik ahead into some advanced topics. We would also discuss how the agent learns to take the best action and the policy for learning the same. We will also learn the difference between the On-Policy and the Off-Policy methods.
8#
發(fā)表于 2025-3-22 21:23:50 | 只看該作者
9#
發(fā)表于 2025-3-23 02:42:27 | 只看該作者
10#
發(fā)表于 2025-3-23 07:05:40 | 只看該作者
ed to become the future of artificial intelligence.Allows re.This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乐平市| 巫山县| 安陆市| 桓台县| 卓资县| 新河县| 沐川县| 和静县| 涪陵区| 二连浩特市| 昌黎县| 邓州市| 衡阳县| 雷州市| 清河县| 镇巴县| 长子县| 元氏县| 抚顺市| 谢通门县| 博野县| 昌黎县| 谷城县| 镶黄旗| 应用必备| 广汉市| 临安市| 托里县| 达州市| 黎城县| 集贤县| 安溪县| 广昌县| 汕头市| 巴东县| 兴业县| 安乡县| 桂东县| 十堰市| 巴中市| 汕头市|