找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning; Fundamentals, Resear Hao Dong,Zihan Ding,Shanghang Zhang Book 2020 Springer Nature Singapore Pte Ltd. 2020 Dee

[復(fù)制鏈接]
樓主: 戰(zhàn)神
21#
發(fā)表于 2025-3-25 05:43:52 | 只看該作者
Deutschlands Gro?kraftversorgungoncept of combinatorial games, the second part introduces the family of algorithms known as Monte Carlo Tree Search, and the third part takes Gomoku as the game environment to demonstrate the details of the AlphaZero algorithm, which combines Monte Carlo Tree Search and deep reinforcement learning from self-play.
22#
發(fā)表于 2025-3-25 08:11:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:01:56 | 只看該作者
Preu?en im deutschen F?deralismusn policy optimization and its approximate versions, each one improving its precedent. All the methods introduced in this chapter will be accompanied with its pseudo-code and, at the end of this chapter, a concrete implementation example.
24#
發(fā)表于 2025-3-25 16:18:19 | 只看該作者
25#
發(fā)表于 2025-3-25 21:16:23 | 只看該作者
Weimar come argomento e come ammonimentoh directions, as the primers of the advanced topics in the second main part of the book, including Chaps. .–., to provide the readers a relatively comprehensive understanding about the deficiencies of present methods, recent development, and future directions in deep reinforcement learning.
26#
發(fā)表于 2025-3-26 04:01:24 | 只看該作者
Policy Gradientn policy optimization and its approximate versions, each one improving its precedent. All the methods introduced in this chapter will be accompanied with its pseudo-code and, at the end of this chapter, a concrete implementation example.
27#
發(fā)表于 2025-3-26 05:16:52 | 只看該作者
Combine Deep ,-Networks with Actor-Critic chapter, we give a brief introduction of the advantages and disadvantages of each kind of method, then introduce some classical algorithms that combine deep .-networks and actor-critic like the deep deterministic policy gradient algorithm, the twin delayed deep deterministic policy gradient algorithm, and the soft actor-critic algorithm.
28#
發(fā)表于 2025-3-26 10:12:19 | 只看該作者
Challenges of Reinforcement Learningh directions, as the primers of the advanced topics in the second main part of the book, including Chaps. .–., to provide the readers a relatively comprehensive understanding about the deficiencies of present methods, recent development, and future directions in deep reinforcement learning.
29#
發(fā)表于 2025-3-26 16:21:50 | 只看該作者
30#
發(fā)表于 2025-3-26 20:39:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
菏泽市| 林芝县| 新化县| 邳州市| 盐津县| 夹江县| 临桂县| 天柱县| 营山县| 莆田市| 宁陕县| 金堂县| 天长市| 且末县| 三门峡市| 诏安县| 阿合奇县| 紫阳县| 南和县| 托克托县| 巴里| 石阡县| 扎鲁特旗| 驻马店市| 南江县| 抚宁县| 项城市| 六盘水市| 淳安县| 古蔺县| 三穗县| 道真| 山阴县| 永安市| 光泽县| 安庆市| 娄底市| 博爱县| 万盛区| 靖远县| 平泉县|