找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Neuro-Fuzzy Systems with Python; With Case Studies an Himanshu Singh,Yunis Ahmad Lone Book 2020 Himanshu Singh, Yunis Ahmad Lone 2020

[復(fù)制鏈接]
樓主: Enlightening
11#
發(fā)表于 2025-3-23 09:41:54 | 只看該作者
Book 2020s book simplifies the implementation of fuzzy logic and neural network concepts using Python...You’ll start by walking through the basics of fuzzy sets and relations, and how each member of the set has its own membership function values. You’ll also look at different architectures and models that ha
12#
發(fā)表于 2025-3-23 17:16:52 | 只看該作者
Introduction to Fuzzy Set Theory, can be performed on them. This chapter also includes a basic introduction to membership functions, which are then explained in detail in the next chapter. Wherever required, Python code is provided for execution purposes.
13#
發(fā)表于 2025-3-23 19:43:39 | 只看該作者
Fuzzy Inference Systems,h define the membership values of each element present in a Fuzzy Set. You learned about the different types of membership functions. Later, you learned about the Fuzzy Rules and reasoning approaches that utilize the concepts of membership functions to give various Fuzzy Solutions.
14#
發(fā)表于 2025-3-24 01:23:37 | 只看該作者
Introduction to Machine Learning,lways better to learn most of the things from the data, rather than hard-coding it directly. This area of Fuzzy Inference Systems is where most of the parameters are learned. The neural networks approach is called Fuzzy Neural Networks.
15#
發(fā)表于 2025-3-24 04:53:31 | 只看該作者
Fuzzy Neural Networks,dealing with . This chapter looks at the different architectures of Fuzzy Neural Networks and the components that define them. You will later learn about the Adaptive Neuro Fuzzy Architecture and its different versions.
16#
發(fā)表于 2025-3-24 10:01:33 | 只看該作者
Book 2020uzzy Inference systems, and various approximations related to the same. You’ll review different types of deep neuro fuzzy classifiers, fuzzy neurons, and the adaptive learning capability of the neural networks. The book concludes by reviewing advanced neuro fuzzy models and applications.?..What You’
17#
發(fā)表于 2025-3-24 14:14:49 | 只看該作者
18#
發(fā)表于 2025-3-24 16:14:37 | 只看該作者
19#
發(fā)表于 2025-3-24 20:51:18 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐陵市| 林西县| 湘阴县| 大英县| 洛浦县| 菏泽市| 宝清县| 津市市| 临猗县| 阳曲县| 尼木县| 赤城县| 伊宁市| 资溪县| 深水埗区| 恭城| 桂林市| 乐山市| 盱眙县| 神木县| 德钦县| 襄垣县| 读书| 南川市| 大兴区| 潍坊市| 嘉义市| 鄂伦春自治旗| 佳木斯市| 四川省| 乐业县| 盈江县| 浏阳市| 大余县| 饶河县| 咸阳市| 宁蒗| 南宁市| 合川市| 稷山县| 彭州市|