找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning: Convergence to Big Data Analytics; Murad Khan,Bilal Jan,Haleem Farman Book 2019 The Author(s), under exclusive license to S

[復(fù)制鏈接]
查看: 7602|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:26:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics
編輯Murad Khan,Bilal Jan,Haleem Farman
視頻videohttp://file.papertrans.cn/265/264644/264644.mp4
概述Offers an introduction to big data and deep learning.Presents a unification of big data and deep learning techniques.Provides an introductory level understanding of the new programming languages and t
叢書(shū)名稱(chēng)SpringerBriefs in Computer Science
圖書(shū)封面Titlebook: Deep Learning: Convergence to Big Data Analytics;  Murad Khan,Bilal Jan,Haleem Farman Book 2019 The Author(s), under exclusive license to S
描述.This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning..Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses var
出版日期Book 2019
關(guān)鍵詞Deep Learning; Big Data analytics; Neural Networks; Artificial Intelligence; Internet of Things; data str
版次1
doihttps://doi.org/10.1007/978-981-13-3459-7
isbn_softcover978-981-13-3458-0
isbn_ebook978-981-13-3459-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics影響因子(影響力)




書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics被引頻次




書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics被引頻次學(xué)科排名




書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics年度引用




書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics年度引用學(xué)科排名




書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics讀者反饋




書(shū)目名稱(chēng)Deep Learning: Convergence to Big Data Analytics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:08:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:08:30 | 只看該作者
Deep Learning Methods and Applications,n various fields. Deep learning has substantially improved the predictive capacity of computing devices, due to the availability of big data, with the help of superior learning algorithms. It has made it possible as well as practical to integrate machine learning with sophisticated applications incl
地板
發(fā)表于 2025-3-22 06:51:45 | 只看該作者
Integration of Big Data and Deep Learning,rchers introduce the concept of deep learning to address the aforementioned challenge. However, big data analytics required a process consists of various steps where in each step an algorithm or a bunch of algorithm can be used. This chapter explains the role of machine learning in processing big da
5#
發(fā)表于 2025-3-22 09:19:50 | 只看該作者
Future of Big Data and Deep Learning for Wireless Body Area Networks,data. It has the ability to find the optimum set of parameters for the network layers using a back-propagation algorithm, thereby modeling intricate structures in the data distribution. Further, deep learning architectures have resulted in tremendous performance on most recent machine learning chall
6#
發(fā)表于 2025-3-22 15:05:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:34:43 | 只看該作者
8#
發(fā)表于 2025-3-23 00:19:53 | 只看該作者
2191-5768 y level understanding of the new programming languages and t.This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time
9#
發(fā)表于 2025-3-23 03:23:08 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛隆县| 青河县| 惠安县| 安平县| 南木林县| 怀宁县| 齐齐哈尔市| 屏东县| 岑巩县| 鹤山市| 师宗县| 樟树市| 中西区| 济阳县| 南木林县| 新郑市| 平潭县| 民和| 黔南| 新田县| 南和县| 修文县| 阿拉善左旗| 永和县| 岳阳县| 甘泉县| 两当县| 江都市| 苗栗县| 南通市| 新安县| 遂溪县| 隆德县| 阜南县| 霍城县| 扬中市| 台州市| 万州区| 盐池县| 隆子县| 神木县|