找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning-Based Face Analytics; Nalini K Ratha,Vishal M. Patel,Rama Chellappa Book 2021 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
樓主: ALLY
31#
發(fā)表于 2025-3-26 22:34:17 | 只看該作者
Deutsche Au?enwirtschaftsf?rderungt of the progress in automatic face recognition has been driven by deep networks in the past few years. In this article, we provide an overview of recent progress in this area and discuss state-of-the-art CNN-based face recognition and verification systems. We also present some open questions and di
32#
發(fā)表于 2025-3-27 05:06:33 | 只看該作者
33#
發(fā)表于 2025-3-27 08:34:41 | 只看該作者
https://doi.org/10.1007/978-3-658-26020-0age synthesis. Conventional 3DMM?is learned from a set of 3D face scans with associated well-controlled 2D face images, and represented by two sets of PCA basis functions. Due to the type and amount of training data, as well as, the linear bases, the representation power of 3DMM?can be limited.
34#
發(fā)表于 2025-3-27 10:18:03 | 只看該作者
https://doi.org/10.1007/978-3-662-33316-7cial to leverage additional properties of the data to successfully recover the lost facial details in the deblurred image. Priors such as sparsity [., ., .], low-rank [.], manifold [.], and patch similarity [.] have been proposed in the literature to obtain a regularized solution.
35#
發(fā)表于 2025-3-27 17:36:45 | 只看該作者
https://doi.org/10.1007/978-3-662-33316-7l-valued feature, often obtained using a deep network. However, comparisons of this high-dimensional feature can be computationally expensive. Furthermore, when dealing with large face images database this representation can lead to prohibitive storage requirements. Also, in a context where the capt
36#
發(fā)表于 2025-3-27 20:24:09 | 只看該作者
Empfindsamkeit und Sturm und Drang,e extremely useful. With the help of the right biometric system in place, cases of swapping, for instance, can be evaluated much faster. In this chapter, we first discuss the various biometric modalities along with their advantages and limitations. We next discuss the face biometrics in detail and p
37#
發(fā)表于 2025-3-28 01:52:23 | 只看該作者
38#
發(fā)表于 2025-3-28 03:06:21 | 只看該作者
39#
發(fā)表于 2025-3-28 10:19:42 | 只看該作者
Darstellung des Untersuchungsmodells,t subject. Various face recognition (FR) systems have been developed over the last two decades. Recent advances in machine learning and computer vision methods have provided robust systems that achieve significant gains in performance of face recognition systems [., .]. Deep learning methods, enable
40#
發(fā)表于 2025-3-28 14:30:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙岩市| 论坛| 滦南县| 定边县| 温州市| 古浪县| 焦作市| 安化县| 太康县| 江北区| 高青县| 桐柏县| 海伦市| 隆子县| 伊川县| 凉城县| 灌阳县| 乌拉特中旗| 汕尾市| 台中县| 苍溪县| 斗六市| 云和县| 吴桥县| 彭山县| 营口市| 察隅县| 叶城县| 卢湾区| 江门市| 云南省| 庆元县| 昌乐县| 时尚| 长宁区| 连云港市| 临汾市| 滨州市| 浏阳市| 黄大仙区| 高州市|