找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning-Based Detection of Catenary Support Component Defect and Fault in High-Speed Railways; Zhigang Liu,Wenqiang Liu,Junping Zhon

[復(fù)制鏈接]
樓主: MAXIM
21#
發(fā)表于 2025-3-25 06:45:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:29:13 | 只看該作者
2363-5010 ults of the catenary detection.Adopts and improves the advan.This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary‘s service performance directly affects the safe op
23#
發(fā)表于 2025-3-25 13:58:50 | 只看該作者
,Preprocessing of Catenary Support Components’ Images,etection difficulty. In addition, in the process of receiving, transmitting, and processing, the image will also be affected by noise such as electromagnetic interference of the sensor, resulting in a decline in image quality and affecting the detection accuracy.
24#
發(fā)表于 2025-3-25 19:00:24 | 只看該作者
25#
發(fā)表于 2025-3-25 22:17:57 | 只看該作者
26#
發(fā)表于 2025-3-26 00:24:38 | 只看該作者
https://doi.org/10.1007/978-3-531-90356-9asic deep learning frameworks of object detection (e.g., Faster R-CNN, YOLO, and SSD) are introduced in CSC positioning, simultaneous positioning of multiple classes of components with high speed and accuracy is achieved. However, it still faces the following challenges.
27#
發(fā)表于 2025-3-26 08:08:32 | 只看該作者
28#
發(fā)表于 2025-3-26 09:16:43 | 只看該作者
29#
發(fā)表于 2025-3-26 15:42:43 | 只看該作者
Positioning of Catenary Support Components,extract handcrafted features (e.g., SIFT, SURF, and HoG) of the template component image and global catenary image and then adapt the feature-matching approach to locate the target component. These methods can only locate one class component at a time and have low accuracy and efficiency. When the b
30#
發(fā)表于 2025-3-26 17:01:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
冕宁县| 伊川县| 墨竹工卡县| 嵩明县| 依安县| 定安县| 保靖县| 东丰县| 泗阳县| 行唐县| 邵阳市| 大英县| 高雄市| 百色市| 黑河市| 周至县| 宁河县| 广州市| 马龙县| 巴马| 抚远县| 武隆县| 板桥市| 沭阳县| 利辛县| 湘乡市| 眉山市| 阜康市| 凌海市| 建水县| 凤台县| 炉霍县| 彭山县| 婺源县| 万载县| 巩义市| 砀山县| 台山市| 威远县| 交口县| 柳林县|