找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning-Based Detection of Catenary Support Component Defect and Fault in High-Speed Railways; Zhigang Liu,Wenqiang Liu,Junping Zhon

[復制鏈接]
樓主: MAXIM
21#
發(fā)表于 2025-3-25 06:45:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:29:13 | 只看該作者
2363-5010 ults of the catenary detection.Adopts and improves the advan.This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary‘s service performance directly affects the safe op
23#
發(fā)表于 2025-3-25 13:58:50 | 只看該作者
,Preprocessing of Catenary Support Components’ Images,etection difficulty. In addition, in the process of receiving, transmitting, and processing, the image will also be affected by noise such as electromagnetic interference of the sensor, resulting in a decline in image quality and affecting the detection accuracy.
24#
發(fā)表于 2025-3-25 19:00:24 | 只看該作者
25#
發(fā)表于 2025-3-25 22:17:57 | 只看該作者
26#
發(fā)表于 2025-3-26 00:24:38 | 只看該作者
https://doi.org/10.1007/978-3-531-90356-9asic deep learning frameworks of object detection (e.g., Faster R-CNN, YOLO, and SSD) are introduced in CSC positioning, simultaneous positioning of multiple classes of components with high speed and accuracy is achieved. However, it still faces the following challenges.
27#
發(fā)表于 2025-3-26 08:08:32 | 只看該作者
28#
發(fā)表于 2025-3-26 09:16:43 | 只看該作者
29#
發(fā)表于 2025-3-26 15:42:43 | 只看該作者
Positioning of Catenary Support Components,extract handcrafted features (e.g., SIFT, SURF, and HoG) of the template component image and global catenary image and then adapt the feature-matching approach to locate the target component. These methods can only locate one class component at a time and have low accuracy and efficiency. When the b
30#
發(fā)表于 2025-3-26 17:01:31 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁陵县| 灵山县| 多伦县| 伊金霍洛旗| 方城县| 宜春市| 凉山| 北安市| 四子王旗| 邢台市| 上思县| 沅陵县| 邳州市| 高阳县| 延安市| 阿拉善盟| 铜川市| 衡山县| 井冈山市| 山东省| 怀远县| 伊金霍洛旗| 揭阳市| 台前县| 大厂| 大姚县| 南涧| 海南省| 南充市| 庄河市| 连城县| 吉木萨尔县| 宜昌市| 交口县| 宾川县| 内丘县| 荥阳市| 专栏| 娱乐| 吉水县| 贵德县|