找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuum Mechanics, Applied Mathematics and Scientific Computing:Godunov‘s Legacy; A Liber Amicorum to Gennadii V. Demidenko,Evgeniy Rome

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:02:02 | 只看該作者
52#
發(fā)表于 2025-3-30 15:59:30 | 只看該作者
Mathematical Models of Plasma Acceleration and Compression in Coaxial Channels,e mentioned. The computation results obtained over the last years are related to the accelerating and compressing flow property dependence on physical conditions and parameters of the problems and on the longitudinal magnetic field magnitude.
53#
發(fā)表于 2025-3-30 18:09:21 | 只看該作者
54#
發(fā)表于 2025-3-30 22:10:19 | 只看該作者
55#
發(fā)表于 2025-3-31 00:52:15 | 只看該作者
https://doi.org/10.1007/978-3-531-19592-6oblem of motion of a rarefied gas in the space of infinitely differentiable functions is formulated and proved. The solution is constructed as a series with recursively calculated coefficients. The solutions obtained are used to study the dynamics of the free boundary.
56#
發(fā)表于 2025-3-31 05:48:13 | 只看該作者
57#
發(fā)表于 2025-3-31 09:54:18 | 只看該作者
,Numerical Solution of the Axisymmetric Dirichlet–Neumann Problem for Laplace’s Equation (Algorithmss of a?rather general shape. The distinctive feature of this algorithm is the absence of the leading error term, which, as a?result, enables us to automatically adjust to arbitrary extra (extraordinary) supplies of smoothness of the sought solutions. In the case of .-smoothness, the solutions are co
58#
發(fā)表于 2025-3-31 14:26:28 | 只看該作者
59#
發(fā)表于 2025-3-31 17:31:53 | 只看該作者
60#
發(fā)表于 2025-3-31 21:46:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海丰县| 宁波市| 馆陶县| 嘉禾县| 东阳市| 获嘉县| 彩票| 建阳市| 汤阴县| 潼南县| 德钦县| 万山特区| 武乡县| 象山县| 巍山| 台州市| 高密市| 泰安市| 绥芬河市| 辽阳市| 渝北区| 湖北省| 大城县| 镇安县| 东平县| 定西市| 陆河县| 屏南县| 东光县| 阳朔县| 包头市| 潼关县| 金昌市| 青阳县| 长垣县| 莱西市| 鄂托克旗| 南丰县| 台中市| 南充市| 卓资县|