找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Mining of Visual Content; Akka Zemmari,Jenny Benois-Pineau Book 2020 The Author(s), under exclusive license to Springer N

[復(fù)制鏈接]
樓主: minuscule
31#
發(fā)表于 2025-3-26 22:59:16 | 只看該作者
Supervised Learning Problem Formulation,g consists in grouping similar data points in the description space thus inducing a structure on it. Then the data model can be expressed in terms of space partition. Probably, the most popular of such grouping algorithms in visual content mining is the K-means approach introduced by MacQueen as ear
32#
發(fā)表于 2025-3-27 02:38:31 | 只看該作者
Optimization Methods,the loss function. Most of them are iterative and operate by decreasing the loss function following a descent direction. These methods solve the problem when the loss function is supposed to be convex. The main idea can be expressed simply as follows: starting from initial arbitrary (or randomly) ch
33#
發(fā)表于 2025-3-27 09:08:08 | 只看該作者
Deep in the Wild,d dimension which finally allows a classification decision. We are interested in two operations: convolution and pooling and trace analogy with these operations in a classical Image Processing framework.
34#
發(fā)表于 2025-3-27 12:03:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:53:20 | 只看該作者
36#
發(fā)表于 2025-3-27 20:47:12 | 只看該作者
37#
發(fā)表于 2025-3-28 01:49:58 | 只看該作者
Introducing Domain Knowledge,is particular application of medical imaging domain, Deep NNs have become the mandatory tool. In this chapter we give some highlights on how the usual steps in design of a Deep Neural Network classifier are implemented in the case when domain knowledge has to be considered. But more than that: faith
38#
發(fā)表于 2025-3-28 03:33:30 | 只看該作者
2191-5768 eep neural networks and application to digital cultural content mining. An additional application field is also discussed, and illustrates how deep learning can be of very high interest to comp978-3-030-34375-0978-3-030-34376-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
39#
發(fā)表于 2025-3-28 07:54:02 | 只看該作者
40#
發(fā)表于 2025-3-28 11:55:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松滋市| 舞钢市| 万州区| 富宁县| 自贡市| 威宁| 抚松县| 新宁县| 辽宁省| 二连浩特市| 尚义县| 江孜县| 娄烦县| 简阳市| 安吉县| 潮安县| 古蔺县| 诏安县| 囊谦县| 将乐县| 西昌市| 萍乡市| 吴旗县| 文登市| 龙里县| 奎屯市| 铁力市| 新兴县| 任丘市| 务川| 中西区| 翁源县| 藁城市| 阿拉善左旗| 安岳县| 新乡县| 大埔县| 洛南县| 景谷| 元江| 马龙县|