找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; 4th International Wo Danail Stoyanov,Zeike T

[復制鏈接]
樓主: antithetic
21#
發(fā)表于 2025-3-25 05:13:50 | 只看該作者
22#
發(fā)表于 2025-3-25 09:14:53 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:02 | 只看該作者
0302-9743 L-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support..978-3-030-00888-8978-3-030-00889-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
24#
發(fā)表于 2025-3-25 16:28:13 | 只看該作者
Some Nitrogen-Containing Compoundsuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.
25#
發(fā)表于 2025-3-25 22:44:51 | 只看該作者
A Review of Analytical Literature image, we use its differential excitation component as a pair of inputs to handle intra-class variations. Experimental results show that our approach has superior performance over the state-of-the-art methods, achieving a classification accuracy of 93.74% on our original emphysema database.
26#
發(fā)表于 2025-3-26 03:36:23 | 只看該作者
27#
發(fā)表于 2025-3-26 07:44:24 | 只看該作者
UNet++: A Nested U-Net Architecture for Medical Image Segmentationuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.
28#
發(fā)表于 2025-3-26 08:53:22 | 只看該作者
29#
發(fā)表于 2025-3-26 13:07:29 | 只看該作者
3D Convolutional Neural Networks for Classification of Functional Connectomesictive models. We showcase our approach on a challenging large-scale dataset (ABIDE, with .) and report state-of-the-art accuracy results on rs-fMRI-based discrimination of autism patients and healthy controls.
30#
發(fā)表于 2025-3-26 18:25:34 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 15:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
两当县| 泗阳县| 黄山市| 丹凤县| 万州区| 嘉兴市| 广宁县| 绍兴县| 义乌市| 从化市| 连山| 莫力| 仪征市| 青海省| 涟水县| 德昌县| 额尔古纳市| 湘潭市| 泗阳县| 朝阳市| 商水县| 荥经县| 阜康市| 武邑县| 沛县| 梁河县| 涞源县| 兴城市| 任丘市| 阳新县| 连州市| 小金县| 大方县| 丹寨县| 曲麻莱县| 集贤县| 南康市| 孟津县| 休宁县| 襄垣县| 阿克|