找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M

[復(fù)制鏈接]
樓主: 與生
21#
發(fā)表于 2025-3-25 05:49:42 | 只看該作者
22#
發(fā)表于 2025-3-25 11:09:24 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:42 | 只看該作者
Overcrowding in mature destination images. Then, a landmark-based deep learning framework is presented for AD/MCI classification, by jointly performing feature extraction and classifier training. Experimental results on three public databases demonstrate that the proposed framework boosts the disease diagnosis performance, compared with several state-of-the-art sMRI-based methods.
24#
發(fā)表于 2025-3-25 19:52:15 | 只看該作者
25#
發(fā)表于 2025-3-26 00:01:39 | 只看該作者
26#
發(fā)表于 2025-3-26 00:46:46 | 只看該作者
Opacity Labeling of Diffuse Lung Diseases in CT Images Using Unsupervised and Semi-supervised Learniation for training classifiers. The performance evaluation is carried out by clustering or classification of six kinds of opacities of diffuse lung diseases in computed tomography (CT) images: consolidation, ground-glass opacity, honeycombing, emphysema, nodular and normal, and the effectiveness of the proposed methods is clarified.
27#
發(fā)表于 2025-3-26 05:46:06 | 只看該作者
Medical Image Classification Using Deep Learninging to classification of focal liver lesions on multi-phase CT images. The main challenge in deep-learning-based medical image classification is the lack of annotated training samples. We demonstrate that fine-tuning can significantly improve the accuracy of liver lesion classification, especially f
28#
發(fā)表于 2025-3-26 08:53:40 | 只看該作者
29#
發(fā)表于 2025-3-26 16:23:08 | 只看該作者
Deep Active Self-paced Learning for Biomedical Image Analysisrain it with the DASL strategy. Experimental results show that the proposed models trained with our DASL strategy perform much better than those trained without DASL using the same amount of annotated samples.
30#
發(fā)表于 2025-3-26 20:06:33 | 只看該作者
Deep Learning in Textural Medical Image Analysisined feature representations by an activation visualization method, and by measuring the frequency response of trained neural networks, in both qualitative and quantitative ways, respectively. These results demonstrate that such successive transfer learning enables networks to grasp both structural
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家界市| 武胜县| 肃南| 长乐市| 宜州市| 崇义县| 额济纳旗| 广水市| 广河县| 土默特右旗| 曲水县| 漳州市| 静安区| 布拖县| 炎陵县| 岑溪市| 友谊县| 绍兴市| 大荔县| 阜新市| 桂阳县| 静海县| 沂水县| 黎平县| 甘孜县| 响水县| 桓台县| 阳江市| 泗水县| 米林县| 明水县| 巴塘县| 秭归县| 长乐市| 任丘市| 农安县| 屯留县| 徐汇区| 和政县| 张家界市| 海宁市|