找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Data Analytics; Recent Techniques, P Debi Prasanna Acharjya,Anirban Mitra,Noor Zaman Book 2022 Springer Nature Switzerland

[復制鏈接]
查看: 11992|回復: 52
樓主
發(fā)表于 2025-3-21 18:15:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning in Data Analytics
副標題Recent Techniques, P
編輯Debi Prasanna Acharjya,Anirban Mitra,Noor Zaman
視頻videohttp://file.papertrans.cn/265/264619/264619.mp4
概述Provides recent advances in the fields of Deep Learning.Presents theoretical advances and its applications to real-life problems.Offers concepts and techniques of deep learning in a precise and clear
叢書名稱Studies in Big Data
圖書封面Titlebook: Deep Learning in Data Analytics; Recent Techniques, P Debi Prasanna Acharjya,Anirban Mitra,Noor Zaman Book 2022 Springer Nature Switzerland
描述.This?book comprises theoretical foundations to deep learning, machine learning and computing system, deep learning algorithms, and various deep learning applications. The book discusses significant issues relating to deep learning in data analytics. Further in-depth reading can be done from the detailed bibliography presented at the end of each chapter. Besides, this book‘s material includes concepts, algorithms, figures, graphs, and tables in guiding researchers through deep learning in data science and its applications for society..Deep learning approaches prevent loss of information and hence enhance the performance of data analysis and learning techniques. It brings up many research issues in the industry and research community to capture and access data effectively. The book provides the conceptual basis of deep learning required to achieve in-depth knowledge in computer and data science. It has been done to make the book more flexible and to stimulate further interest in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications..
出版日期Book 2022
關鍵詞Deep Learning; Deep Networks; Machine Learning; Computational Intelligence; Deep Learning Algorithms; Dee
版次1
doihttps://doi.org/10.1007/978-3-030-75855-4
isbn_softcover978-3-030-75857-8
isbn_ebook978-3-030-75855-4Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Deep Learning in Data Analytics影響因子(影響力)




書目名稱Deep Learning in Data Analytics影響因子(影響力)學科排名




書目名稱Deep Learning in Data Analytics網絡公開度




書目名稱Deep Learning in Data Analytics網絡公開度學科排名




書目名稱Deep Learning in Data Analytics被引頻次




書目名稱Deep Learning in Data Analytics被引頻次學科排名




書目名稱Deep Learning in Data Analytics年度引用




書目名稱Deep Learning in Data Analytics年度引用學科排名




書目名稱Deep Learning in Data Analytics讀者反饋




書目名稱Deep Learning in Data Analytics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:57:50 | 只看該作者
H.-S. Kim,L. Wiedeman,H. Helvajiansed learning algorithm used in this chapter. Finally, the pre-trained deep convolutional neural network (DCNN) model is used. The experiment is conducted using Geneva multimodal emotion portrayals (GEMEP) corpus dataset. In this dataset, human body movement expressing the five archetypical emotions
板凳
發(fā)表于 2025-3-22 01:20:33 | 只看該作者
地板
發(fā)表于 2025-3-22 06:06:43 | 只看該作者
Introduction: An Overview of the Book stage, a deep ranking support vector machine (SVM) is used to define a consistent feature label, which will be served as input to a CNN. It reduces the number of channels in the following CNN and allows it to converge on extended detailed segmentation of the optic discs and vessels. In order to gai
5#
發(fā)表于 2025-3-22 09:39:24 | 只看該作者
https://doi.org/10.1007/978-1-349-26109-3ed in an increased life span of patients with genetic disabilities. Thus, the affected persons can now live up?to a higher age. The current study aimed to discover hidden patterns from congenital heart databases for future medical diagnosis using a clustering technique to find secret ways. The desig
6#
發(fā)表于 2025-3-22 14:20:02 | 只看該作者
7#
發(fā)表于 2025-3-22 17:52:21 | 只看該作者
8#
發(fā)表于 2025-3-23 00:03:30 | 只看該作者
Vorarbeiten zur empirischen Analyse,n concept of security in cloud computing. It also throws light on security to sensitive data, all the four-level authentication authorization, data security, network security, cloud security. Increasing threat of security in the growing demand of clouds is becoming a main issue. This chapter also de
9#
發(fā)表于 2025-3-23 02:19:04 | 只看該作者
2197-6503 in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications..978-3-030-75857-8978-3-030-75855-4Series ISSN 2197-6503 Series E-ISSN 2197-6511
10#
發(fā)表于 2025-3-23 05:40:07 | 只看該作者
A Study on Discrete Action Sequences Using Deep Emotional Intelligencesed learning algorithm used in this chapter. Finally, the pre-trained deep convolutional neural network (DCNN) model is used. The experiment is conducted using Geneva multimodal emotion portrayals (GEMEP) corpus dataset. In this dataset, human body movement expressing the five archetypical emotions
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-24 19:27
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西林县| 钦州市| 宾川县| 南涧| 合山市| 深圳市| 扬中市| 西乌| 调兵山市| 望谟县| 绵阳市| 冕宁县| 临西县| 定兴县| 泰宁县| 渝北区| 黔南| 湟源县| 双峰县| 琼结县| 托克逊县| 盈江县| 昌图县| 淮南市| 宝丰县| 大埔区| 南江县| 鄂州市| 双城市| 施秉县| 平顺县| 阿合奇县| 永清县| 奇台县| 忻州市| 盐津县| 翁牛特旗| 依兰县| 久治县| 邵阳县| 彩票|