找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Computational Mechanics; An Introductory Cour Stefan Kollmannsberger,Davide D‘Angella,Leon Herrm Textbook 2021 The Editor(

[復(fù)制鏈接]
樓主: 回憶錄
21#
發(fā)表于 2025-3-25 03:23:08 | 只看該作者
Physics-Informed Neural Networks,e evolution in a one-dimensional spatial domain is determined using the non-linear heat equation, using both a continuous and a discrete approach. Finally, the data-driven identification is illustrated with the static bar, where the cross-sectional stiffness is estimated from the displacement.
22#
發(fā)表于 2025-3-25 07:44:28 | 只看該作者
Deep Energy Method,r to handle singularities than with the PINNs. However, this approach cannot be used for the identification of differential equations. The method is illustrated with the same static bar example from Chap.?2, where the displacement is estimated.
23#
發(fā)表于 2025-3-25 13:50:49 | 只看該作者
24#
發(fā)表于 2025-3-25 16:05:48 | 只看該作者
25#
發(fā)表于 2025-3-25 23:39:57 | 只看該作者
26#
發(fā)表于 2025-3-26 01:34:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:29:07 | 只看該作者
Introduction,ter interest in areas other than computer science, such as physics and engineering. This chapter provides a brief overview of the recent developments in artificial intelligence. Furthermore, several ideas of different approaches using deep learning in computational mechanics are introduced. When tra
28#
發(fā)表于 2025-3-26 09:20:14 | 只看該作者
Fundamental Concepts of Machine Learning, this using data. This chapter gives an overview of the fundamental concepts, including the data structures, learning types, and the different machine learning tasks. Additionally, the gradient descent method is introduced to illustrate how many machine learning algorithms learn through experience.
29#
發(fā)表于 2025-3-26 15:29:38 | 只看該作者
Neural Networks,s. ANNs serve as universal function approximators, meaning that a sufficiently complex neural network can learn almost any function in any dimension. This flexibility, combined with backpropagation and a learning algorithm, enables to learn unknown functions with an astonishing accuracy. This chapte
30#
發(fā)表于 2025-3-26 20:25:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 03:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦城县| 五指山市| 长子县| 怀集县| 尤溪县| 三亚市| 綦江县| 安岳县| 敦煌市| 泰兴市| 左贡县| 南澳县| 白沙| 通城县| 高平市| 资溪县| 四子王旗| 永靖县| 沈丘县| 宜君县| 承德县| 长沙县| 合作市| 扬州市| 巴塘县| 石林| 枞阳县| 凭祥市| 岑巩县| 靖边县| 建平县| 福建省| 寻甸| 会理县| 叙永县| 旺苍县| 华坪县| 渝北区| 崇州市| 洛隆县| 南溪县|