找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Unmanned Systems; Anis Koubaa,Ahmad Taher Azar Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusiv

[復(fù)制鏈接]
樓主: 去是公開
11#
發(fā)表于 2025-3-23 11:45:31 | 只看該作者
12#
發(fā)表于 2025-3-23 13:57:31 | 只看該作者
13#
發(fā)表于 2025-3-23 21:57:13 | 只看該作者
Playing Doom with Anticipator-A3C Based Agents Using Deep Reinforcement Learning and the ViZDoom Ga by adding an anticipator network to the original model structure. The goal of doing this is to make the agent act more like human players. It will generate anticipation before making decisions, then combine the real-time game screen with anticipation images together as a whole input of the network
14#
發(fā)表于 2025-3-24 00:21:25 | 只看該作者
Deep Reinforcement Learning for Quadrotor Path Following and Obstacle Avoidance,ocity according to the path’s shape. For the obstacle avoidance problem, a combination of a DDPG agent that avoids obstacles and another one that follows the path is presented. The obstacle avoidance approach uses the LIDAR information to detect obstacles around the vehicle. LIDAR data is processed
15#
發(fā)表于 2025-3-24 03:27:30 | 只看該作者
16#
發(fā)表于 2025-3-24 07:30:33 | 只看該作者
17#
發(fā)表于 2025-3-24 11:11:35 | 只看該作者
,Detection and Recognition of Vehicle’s Headlights Types for Surveillance Using Deep Neural Networksify the vehicles which are violating the traffic laws. Various problems exist in the recognition and detection of headlights, such as erroneous detection of street lights, reflection of water in rain, sign lights and the reflection plate. Some other techniques are also used for this kind of problems
18#
發(fā)表于 2025-3-24 18:10:11 | 只看該作者
Desk Reference for Neurosciencene learning, specifically deep learning and reinforcement learning can be leveraged to develop next-generation autonomous UAS. We first begin motivating this chapter by discussing the application, challenges, and opportunities of the current UAS in the introductory section. We then provide an overvi
19#
發(fā)表于 2025-3-24 21:38:14 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
简阳市| 治县。| 洞头县| 金湖县| 策勒县| 阜平县| 扬中市| 阳泉市| 清水县| 嘉祥县| 宜兰市| 当涂县| 乐至县| 成都市| 建平县| 泾阳县| 大冶市| 大兴区| 阜阳市| 汕尾市| 富平县| 柏乡县| 揭阳市| 太白县| 临泉县| 福鼎市| 泸西县| 红桥区| 馆陶县| 连云港市| 苏尼特右旗| 德阳市| 柳林县| 桐城市| 阜南县| 柏乡县| 乌鲁木齐市| 东乌珠穆沁旗| 新巴尔虎左旗| 都兰县| 和田市|