找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Hydrometeorology and Environmental Science; Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab

[復制鏈接]
查看: 32565|回復: 46
樓主
發(fā)表于 2025-3-21 19:50:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning for Hydrometeorology and Environmental Science
編輯Taesam Lee,Vijay P. Singh,Kyung Hwa Cho
視頻videohttp://file.papertrans.cn/265/264608/264608.mp4
概述Provides step-by-step tutorials that help the reader to learn complex deep learning algorithms.Gives an explanation of deep learning techniques and their applications to hydrometeorological and enviro
叢書名稱Water Science and Technology Library
圖書封面Titlebook: Deep Learning for Hydrometeorology and Environmental Science;  Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab
描述.This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples with real datasets of hydrometeorology (e.g. streamflow and temperature) and environmental science (e.g. water quality). .Deep learning is known as part of machine learning methodology based on the artificial neural network. Increasing data availability and computing power enhance applications of deep learning to hydrometeorological and environmental fields. However, books that specifically focus on applications to these fields are limited..Most of deep learning books demonstrate theoretical backgrounds and mathematics. However, examples with real data and step-by-step explanations to understand the algorithms in hydrometeorology and environmental science are very rare.. .This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo
出版日期Book 2021
關鍵詞Hydrology; Meteorology; Artificial neural networks; Climate index; Convolutional neural networks; Lon Sho
版次1
doihttps://doi.org/10.1007/978-3-030-64777-3
isbn_softcover978-3-030-64779-7
isbn_ebook978-3-030-64777-3Series ISSN 0921-092X Series E-ISSN 1872-4663
issn_series 0921-092X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning for Hydrometeorology and Environmental Science影響因子(影響力)




書目名稱Deep Learning for Hydrometeorology and Environmental Science影響因子(影響力)學科排名




書目名稱Deep Learning for Hydrometeorology and Environmental Science網(wǎng)絡公開度




書目名稱Deep Learning for Hydrometeorology and Environmental Science網(wǎng)絡公開度學科排名




書目名稱Deep Learning for Hydrometeorology and Environmental Science被引頻次




書目名稱Deep Learning for Hydrometeorology and Environmental Science被引頻次學科排名




書目名稱Deep Learning for Hydrometeorology and Environmental Science年度引用




書目名稱Deep Learning for Hydrometeorology and Environmental Science年度引用學科排名




書目名稱Deep Learning for Hydrometeorology and Environmental Science讀者反饋




書目名稱Deep Learning for Hydrometeorology and Environmental Science讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:32:47 | 只看該作者
地板
發(fā)表于 2025-3-22 06:04:16 | 只看該作者
5#
發(fā)表于 2025-3-22 09:50:26 | 只看該作者
Improving Model Performance, are explained. The basic idea of these two methods is on controlling the dataset, since repeated usage of the same dataset for training and validation might result in overfitting. Furthermore, regularization of the neural network model training by L-norm regularization and dropout of hidden nodes a
6#
發(fā)表于 2025-3-22 14:38:53 | 只看該作者
7#
發(fā)表于 2025-3-22 19:00:47 | 只看該作者
8#
發(fā)表于 2025-3-22 21:57:21 | 只看該作者
9#
發(fā)表于 2025-3-23 02:09:27 | 只看該作者
0921-092X ues and their applications to hydrometeorological and enviro.This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples
10#
發(fā)表于 2025-3-23 08:47:31 | 只看該作者
Erkki Tomppo,Juha Heikkinen,Nina Vainikainen to improve the speed of convergence and to find the best trajectory to reach the optimum of the employed loss function for a network. In this chapter, those methods for updating weights are explained.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
郧西县| 敦化市| 东方市| 梅河口市| 望奎县| 虎林市| 扶风县| 黎川县| 邳州市| 潜山县| 泾阳县| 天津市| 海门市| 鱼台县| 金川县| 灵丘县| 南宫市| 巧家县| 都匀市| 麻阳| 五常市| 平湖市| 大渡口区| 浠水县| 商都县| 扬中市| 德令哈市| 略阳县| 石首市| 亚东县| 秦皇岛市| 鄄城县| 德昌县| 沙雅县| 普洱| 兴隆县| 饶河县| 昆山市| 扬中市| 藁城市| 门源|