找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Cancer Diagnosis; Utku Kose,Jafar Alzubi Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
樓主: 密度
21#
發(fā)表于 2025-3-25 05:21:06 | 只看該作者
1860-949X niques such as CNN, LSTM, and Autoencoder Networks.Offers a This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for count
22#
發(fā)表于 2025-3-25 11:10:30 | 只看該作者
23#
發(fā)表于 2025-3-25 11:42:30 | 只看該作者
24#
發(fā)表于 2025-3-25 17:23:21 | 只看該作者
Designing Organizational Systemsobtained using pre-trained Inception v3 model. The resulting vectors are then used as input to the linear SVM (Support Vector Machine) classification model. The SVM model provided an accuracy of 75% on the blind folded test dataset provided in the competition.
25#
發(fā)表于 2025-3-25 23:37:45 | 只看該作者
,Classification of Canine Fibroma and?Fibrosarcoma Histopathological Images Using Convolutional Neurmuch higher performance value and training time is shorter than others. Thanks to low prediction error rate achieved with FibroNET network using real data, it seems possible to develop an artificial intelligence-based reliable decision support system that will facilitate surgeons’ decision making in practice.
26#
發(fā)表于 2025-3-26 01:55:58 | 只看該作者
27#
發(fā)表于 2025-3-26 07:07:39 | 只看該作者
Designing Organizational Systemsst performance was achieved by re-training a modified version of ResNet-50 convolutional neural network with accuracy equal to 93.89%. Analysis on skin lesion pathology type was also performed with classification accuracy for melanoma and basal cell carcinoma being equal to 79.13 and 82.88%, respectively.
28#
發(fā)表于 2025-3-26 09:41:37 | 只看該作者
29#
發(fā)表于 2025-3-26 13:23:41 | 只看該作者
Opening up the Innovation Processlearning is nowadays a very promising approach to develop effective solution for clinical diagnosis. This chapter provides at first some basic concepts and techniques behind brain tumor segmentation. Then the imaging techniques used for brain tumor visualization are described. Later on, the dataset and segmentation methods are discussed.
30#
發(fā)表于 2025-3-26 16:52:14 | 只看該作者
Evaluation of Big Data Based CNN Models in Classification of Skin Lesions with Melanoma,st performance was achieved by re-training a modified version of ResNet-50 convolutional neural network with accuracy equal to 93.89%. Analysis on skin lesion pathology type was also performed with classification accuracy for melanoma and basal cell carcinoma being equal to 79.13 and 82.88%, respectively.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡南县| 东阳市| 郧西县| 辰溪县| 盈江县| 隆昌县| 如皋市| 达拉特旗| 台东市| 如皋市| 罗平县| 涡阳县| 焦作市| 格尔木市| 桑日县| 监利县| 广宗县| 滁州市| 高雄县| 百色市| 利津县| 永靖县| 吉隆县| 鲜城| 格尔木市| 仪征市| 西贡区| 湖北省| 中超| 将乐县| 广西| 清丰县| 会同县| 泌阳县| 布拖县| 南康市| 黔西| 裕民县| 霍林郭勒市| 滨州市| 城固县|