找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Biomedical Data Analysis; Techniques, Approach Mourad Elloumi Book 2021 Springer Nature Switzerland AG 2021 Deep Learning

[復制鏈接]
樓主: OAK
11#
發(fā)表于 2025-3-23 10:06:28 | 只看該作者
Medical Image Retrieval System Using Deep Learning Techniquesave discussed the different hand-crafted image features based retrieval systems to understand the perspectives of this research field. Here, we aim to congregate the weaknesses and constraints of the conventional retrieval systems and respective solutions with the help of the advanced DL algorithms.
12#
發(fā)表于 2025-3-23 14:09:21 | 只看該作者
13#
發(fā)表于 2025-3-23 19:57:30 | 只看該作者
14#
發(fā)表于 2025-3-23 23:21:47 | 只看該作者
Deep Learning in Multi-Omics Data Integration in Cancer Diagnosticto be a different disease. That means the genomic activities varies among these different diseases and the normal tissue as well. Thanks to the power of computing, . (DL) techniques have become feasible to integrate multi-omics data generated from the cells/tissue to study the outcomes of cancer as
15#
發(fā)表于 2025-3-24 04:30:21 | 只看該作者
Using Deep Learning with Canadian Primary Care Data for Disease Diagnosismmon diseases, the amount of available labeled data is often insufficient, and a variety of strategies are being explored to deal with inadequate, noisy and missing data. This chapter describes the benefits of using DL models with EMR data for research to improve provisioning of health care in prima
16#
發(fā)表于 2025-3-24 08:45:09 | 只看該作者
17#
發(fā)表于 2025-3-24 12:53:29 | 只看該作者
Book 2021ications of the presented techniques and approaches on other topics in biomedical data analysis. The book finds a balance between theoretical and practical coverage of a wide range of issues in the field of biomedical data analysis, thanks to DL. The few published books on DL for biomedical data ana
18#
發(fā)表于 2025-3-24 16:55:53 | 只看該作者
19#
發(fā)表于 2025-3-24 21:14:03 | 只看該作者
Book 2021, with both a broad coverage and enough depth to be of practical use to working professionals. This book offers enough fundamental and technical information on these techniques, approaches and the related problems without overcrowding the reader‘s head. It presents the results of the latest investig
20#
發(fā)表于 2025-3-25 02:17:11 | 只看該作者
IoT Applications in Health Care,h dimensionality of microarray data and different deep learning classification techniques such as 2-. (2D- CNN) and 1-. CNN (1D-CNN). The proposed method used the fisher criterion and 1D-CNN techniques for microarray cancer samples prediction.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-6 08:20
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
镇江市| 观塘区| 商城县| 安宁市| 年辖:市辖区| 广水市| 镇远县| 安顺市| 比如县| 祁阳县| 盈江县| 枣庄市| 黑龙江省| 大田县| 东山县| 清苑县| 高安市| 文登市| 青铜峡市| 邵阳市| 维西| 梅州市| 大厂| 大丰市| 彭泽县| 墨竹工卡县| 昌黎县| 谷城县| 从江县| 越西县| 互助| 鄂托克前旗| 和硕县| 德兴市| 云霄县| 陵川县| 龙口市| 霍州市| 望江县| 丰城市| 元氏县|