找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Autonomous Vehicle Control; Algorithms, State-of Sampo Kuutti,Saber Fallah,Richard Bowden Book 2019 Springer Nature Switz

[復(fù)制鏈接]
查看: 19366|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:36:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning for Autonomous Vehicle Control
副標(biāo)題Algorithms, State-of
編輯Sampo Kuutti,Saber Fallah,Richard Bowden
視頻videohttp://file.papertrans.cn/265/264600/264600.mp4
叢書名稱Synthesis Lectures on Advances in Automotive Technology
圖書封面Titlebook: Deep Learning for Autonomous Vehicle Control; Algorithms, State-of Sampo Kuutti,Saber Fallah,Richard Bowden Book 2019 Springer Nature Switz
描述.The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest...In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field..
出版日期Book 2019
版次1
doihttps://doi.org/10.1007/978-3-031-01502-1
isbn_softcover978-3-031-00374-5
isbn_ebook978-3-031-01502-1Series ISSN 2576-8107 Series E-ISSN 2576-8131
issn_series 2576-8107
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Deep Learning for Autonomous Vehicle Control影響因子(影響力)




書目名稱Deep Learning for Autonomous Vehicle Control影響因子(影響力)學(xué)科排名




書目名稱Deep Learning for Autonomous Vehicle Control網(wǎng)絡(luò)公開度




書目名稱Deep Learning for Autonomous Vehicle Control網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning for Autonomous Vehicle Control被引頻次




書目名稱Deep Learning for Autonomous Vehicle Control被引頻次學(xué)科排名




書目名稱Deep Learning for Autonomous Vehicle Control年度引用




書目名稱Deep Learning for Autonomous Vehicle Control年度引用學(xué)科排名




書目名稱Deep Learning for Autonomous Vehicle Control讀者反饋




書目名稱Deep Learning for Autonomous Vehicle Control讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:59:14 | 只看該作者
Kristina H??k,David Benyon,Alan J. Munro vehicles on the road has led to increased pressure to solve issues such as traffic congestion, pollution, and road safety. The leading answer to resolving these issues among the research community is self-driving cars [1–3]. For instance, according to the World Health Organization, an estimated 1.3
板凳
發(fā)表于 2025-3-22 01:22:57 | 只看該作者
地板
發(fā)表于 2025-3-22 05:35:11 | 只看該作者
5#
發(fā)表于 2025-3-22 09:20:13 | 只看該作者
6#
發(fā)表于 2025-3-22 14:28:48 | 只看該作者
Designing Instruction For Open Sharingts to later chapters were also presented. The review of control techniques was broken into three sections: lateral, longitudinal, and full vehicle control. The lateral control systems were shown to favor using supervised learning to predict steering angles from image inputs, while the dominant trend
7#
發(fā)表于 2025-3-22 18:16:54 | 只看該作者
Deep Learning for Autonomous Vehicle Control978-3-031-01502-1Series ISSN 2576-8107 Series E-ISSN 2576-8131
8#
發(fā)表于 2025-3-22 23:54:47 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:56 | 只看該作者
Kristina H??k,David Benyon,Alan J. Munroent years and has shown great promise in fields such as computer vision [24], speech recognition [25], and language processing [26]. The aim of this chapter is to provide the reader with a brief background on neural networks and deep learning methods which are discussed in the later sections.
10#
發(fā)表于 2025-3-23 06:23:22 | 只看該作者
Designing Instruction For Open Sharingake recommendations for the direction of future research. Since multiple research projects have focussed on learning a single driving action, the discussion on control techniques in this chapter is broken into three sections: lateral (steering), longitudinal (acceleration and braking), and full vehicle control.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌云县| 临西县| 柘荣县| 简阳市| 平安县| 宁夏| 侯马市| 衢州市| 嵩明县| 常德市| 新泰市| 任丘市| 罗甸县| 浮山县| 汕尾市| 建始县| 分宜县| 黄梅县| 安溪县| 乌鲁木齐县| 平安县| 龙州县| 饶河县| 保靖县| 大港区| 大足县| 林州市| 蕲春县| 札达县| 平塘县| 聂荣县| 兴化市| 辛集市| 获嘉县| 措美县| 漾濞| 香港| 华安县| 滨海县| 玉门市| 广元市|