找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Medical Applications; Jin Keun Seo Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復制鏈接]
查看: 8762|回復: 41
樓主
發(fā)表于 2025-3-21 19:47:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning and Medical Applications
編輯Jin Keun Seo
視頻videohttp://file.papertrans.cn/265/264594/264594.mp4
概述Provides an understanding of the interfaces between the model and other factors, and of clinical applications.Offers comprehensive, in-depth understanding of deep learning-based medical image‘analysis
叢書名稱Mathematics in Industry
圖書封面Titlebook: Deep Learning and Medical Applications;  Jin Keun Seo Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to
描述Over the past 40 years, diagnostic medical imaging has undergone remarkable advancements in CT, MRI, and ultrasound technology. Today, the field is experiencing a major paradigm shift, thanks to significant and rapid progress in deep learning techniques. As a result, numerous innovative AI-based programs have been developed to improve image quality and enhance clinical workflows, leading to more efficient and accurate diagnoses..AI advancements of medical imaging not only address existing unsolved problems but also present new and complex challenges. Solutions to these challenges can improve image quality and reveal new information currently obscured by noise, artifacts, or other signals. Holistic insight is the key to solving these challenges. Such insight may lead to a creative solution only when it is based on a thorough understanding of existing methods and unmet demands..This book focuses on advanced topics in medical imagingmodalities, including CT and ultrasound, with the aim of providing practical applications in the healthcare industry. It strikes a balance between mathematical theory, numerical practice, and clinical applications, offering comprehensive coverage from basi
出版日期Book 2023
關鍵詞Medical image computing; Image reconstruction method; Nonlinear inverse problems; Mathematical modeling
版次1
doihttps://doi.org/10.1007/978-981-99-1839-3
isbn_softcover978-981-99-1841-6
isbn_ebook978-981-99-1839-3Series ISSN 1612-3956 Series E-ISSN 2198-3283
issn_series 1612-3956
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Deep Learning and Medical Applications影響因子(影響力)




書目名稱Deep Learning and Medical Applications影響因子(影響力)學科排名




書目名稱Deep Learning and Medical Applications網絡公開度




書目名稱Deep Learning and Medical Applications網絡公開度學科排名




書目名稱Deep Learning and Medical Applications被引頻次




書目名稱Deep Learning and Medical Applications被引頻次學科排名




書目名稱Deep Learning and Medical Applications年度引用




書目名稱Deep Learning and Medical Applications年度引用學科排名




書目名稱Deep Learning and Medical Applications讀者反饋




書目名稱Deep Learning and Medical Applications讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:51:49 | 只看該作者
978-981-99-1841-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
板凳
發(fā)表于 2025-3-22 03:07:31 | 只看該作者
地板
發(fā)表于 2025-3-22 04:40:52 | 只看該作者
https://doi.org/10.1007/978-3-658-15386-1mation related to its size and shape. Over the last few decades, many innovative methods of performing segmentation have been proposed, and these segmentation techniques are based on the basic recipes using thresholding and edge-based detection. Segmentation and classification in medical imaging are
5#
發(fā)表于 2025-3-22 08:51:55 | 只看該作者
https://doi.org/10.1007/978-3-658-15386-1e number of aged people with artificial prostheses and metallic implants is swiftly increasing with the rapidly aging population. Metallic objects present in the CBCT field of view produce streaking artifacts that highly degrade the reconstructed CT images, resulting in a loss of information on the
6#
發(fā)表于 2025-3-22 14:09:06 | 只看該作者
https://doi.org/10.1007/978-3-658-15386-1at integrates 3D jaw–teeth–face data from various imaging devices such as cone-beam computerized tomography (CBCT), oral scanner, face scanner, 3D tracking devices, and others. Digital dentistry equipped with the AI-based integrated platform enables dentists to provide accurate diagnoses and treatme
7#
發(fā)表于 2025-3-22 19:35:20 | 只看該作者
8#
發(fā)表于 2025-3-22 21:57:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:47:49 | 只看該作者
10#
發(fā)表于 2025-3-23 06:54:39 | 只看該作者
Jin Keun SeoProvides an understanding of the interfaces between the model and other factors, and of clinical applications.Offers comprehensive, in-depth understanding of deep learning-based medical image‘analysis
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-6 13:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
苏尼特右旗| 宁城县| 新丰县| 襄汾县| 阳山县| 房山区| 牙克石市| 乾安县| 长治县| 英吉沙县| 朝阳县| 托里县| 定安县| 扬中市| 成武县| 平山县| 旬邑县| 河西区| 屏东县| 黄龙县| 陆河县| 瓦房店市| 麻栗坡县| 大足县| 介休市| 罗田县| 南召县| 正宁县| 慈溪市| 疏附县| 揭西县| 金乡县| 深水埗区| 平果县| 彰武县| 化州市| 格尔木市| 台中县| 虹口区| 高安市| 炎陵县|