找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Data Labeling for Medical Applications; First International Gustavo Carneiro,Diana Mateus,Julien Cornebise Conference pr

[復制鏈接]
樓主: interleukins
51#
發(fā)表于 2025-3-30 11:45:27 | 只看該作者
https://doi.org/10.1007/978-3-031-01598-4ing early diagnosis of brain diseases. However, 7T MRI scanners are less accessible, compared to the 3T MRI scanners. This motivates us to reconstruct 7T-like images from 3T MRI. We propose a deep architecture for Convolutional Neural Network (CNN), which uses the . (intensity) and . (labels of brai
52#
發(fā)表于 2025-3-30 15:09:15 | 只看該作者
Designed Technologies for Healthy Agingwork which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-pa
53#
發(fā)表于 2025-3-30 16:31:29 | 只看該作者
54#
發(fā)表于 2025-3-31 00:35:16 | 只看該作者
https://doi.org/10.1007/978-3-031-01598-4dness. Problematically, the visual indicators of ROP are not well understood and neonatal fundus images are usually of poor quality and resolution. We investigate two ways to aid clinicians in ROP detection using convolutional neural networks (CNN): (1) We fine-tune a pretrained GoogLeNet as a ROP d
55#
發(fā)表于 2025-3-31 03:38:10 | 只看該作者
Vincent Jeanne,Maarten BodlaenderCT) examinations. FCN has proven to be a very powerful tool for semantic segmentation. We explore the FCN performance on a relatively small dataset and compare it to patch based CNN and sparsity based classification schemes. Our data contains CT examinations from 20 patients with overall 68 lesions
56#
發(fā)表于 2025-3-31 07:11:13 | 只看該作者
57#
發(fā)表于 2025-3-31 10:18:56 | 只看該作者
58#
發(fā)表于 2025-3-31 16:33:22 | 只看該作者
59#
發(fā)表于 2025-3-31 18:54:00 | 只看該作者
Theoretical Approach in Design Methodologyent a new multi-task convolutional neural network (CNN) approach for detection and semantic description of lesions in diagnostic images. The proposed CNN-based architecture is trained to generate and rank rectangular regions of interests (ROI’s) surrounding suspicious areas. The highest score candid
60#
發(fā)表于 2025-3-31 22:16:13 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-24 23:59
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安福县| 德钦县| 博白县| 梅州市| 三台县| 建阳市| 井研县| 开原市| 会理县| 陕西省| 天津市| 任丘市| 泽州县| 定边县| 惠来县| 清流县| 大丰市| 法库县| 安西县| 宁陵县| 新巴尔虎左旗| 汝阳县| 额济纳旗| 瓦房店市| 晴隆县| 安远县| 哈巴河县| 黎平县| 汉阴县| 颍上县| 博罗县| 光山县| 桐庐县| 伊川县| 淄博市| 长岭县| 深水埗区| 裕民县| 包头市| 淄博市| 深州市|