找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Le Lu,Xiaosong Wang,Lin Yang Book 2019 Sprin

[復(fù)制鏈接]
樓主: 生長變吼叫
41#
發(fā)表于 2025-3-28 18:24:21 | 只看該作者
https://doi.org/10.1007/978-1-349-21601-7resolution patches at different cross sections of the spatial-temporal data and reconstructs high-quality CT volumes. We assess the performance of the network concerning image restoration?at different tube currents and multiple resolution scales. The results indicate the ability of our network in re
42#
發(fā)表于 2025-3-28 19:43:52 | 只看該作者
https://doi.org/10.1007/0-306-48631-8ibility of important structural details after aggressive denoising. This paper introduces a new CT image denoising?method based on the generative adversarial network (GAN)?with Wasserstein distance and perceptual similarity. The Wasserstein distance is a key concept of the optimal transport theory,
43#
發(fā)表于 2025-3-28 23:36:17 | 只看該作者
44#
發(fā)表于 2025-3-29 06:32:53 | 只看該作者
45#
發(fā)表于 2025-3-29 08:19:07 | 只看該作者
46#
發(fā)表于 2025-3-29 14:30:36 | 只看該作者
47#
發(fā)表于 2025-3-29 16:00:52 | 只看該作者
Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurrent Neural Contextualomputer-aided screening, diagnosis, and quantitative assessment. Yet, pancreas is a challenging abdominal organ?to segment due to the high inter-patient anatomical variability in both shape and volume metrics. Recently, convolutional neural networks?(CNN) have demonstrated promising performance on a
48#
發(fā)表于 2025-3-29 20:23:15 | 只看該作者
Deep Learning for Muscle Pathology Image Analysis critical to guide effective patient treatment since each subtype requires distinct therapy. Image analysis?of hematoxylin and eosin (H&E)-stained whole-slide specimens of muscle biopsies are considered as a gold standard for effective IM diagnosis. Accurate segmentation of perimysium plays an impor
49#
發(fā)表于 2025-3-30 01:41:09 | 只看該作者
2D-Based Coarse-to-Fine Approaches for Small Target Segmentation in Abdominal CT Scansgans?(e.g., .) or neoplasms (e.g., .) is sometimes below satisfaction, arguably because deep networks are easily disrupted by the complex and variable background regions which occupy a large fraction of the input volume. In this chapter, we propose two coarse-to-fine mechanisms which use prediction
50#
發(fā)表于 2025-3-30 04:07:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
田林县| 卓尼县| 合作市| 达拉特旗| 岳池县| 丽江市| 宜宾市| 开江县| 抚松县| 海晏县| 宜昌市| 衢州市| 桦甸市| 大关县| 汝南县| 宝清县| 开鲁县| 巫溪县| 丰城市| 印江| 蓬莱市| 阿尔山市| 瑞丽市| 德兴市| 绥宁县| 门源| 克东县| 类乌齐县| 三河市| 岳西县| 固始县| 天峨县| 白水县| 宁南县| 甘德县| 宿松县| 宜昌市| 秭归县| 利辛县| 吉林省| 铁力市|