找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Image Computing; Precision Medicine, Le Lu,Yefeng Zheng,Lin Yang Book 2017 Spr

[復(fù)制鏈接]
樓主: minutia
11#
發(fā)表于 2025-3-23 12:44:24 | 只看該作者
On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imagingodalities, and studied the necessity of fine-tuned CNNs under varying amounts of training data. Second, . In response, we proposed a layer-wise fine-tuning scheme to examine how the extent or depth of fine-tuning contributes to the success of knowledge transfer. Our experiments consistently showed t
12#
發(fā)表于 2025-3-23 17:23:43 | 只看該作者
13#
發(fā)表于 2025-3-23 18:03:33 | 只看該作者
Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammogramsgnal-to-noise ratio of their appearance. We address this problem with structured output prediction models that use potential functions based on deep convolution neural network (CNN) and deep belief network (DBN). The two types of structured output prediction models that we study in this work are the
14#
發(fā)表于 2025-3-24 00:41:44 | 只看該作者
Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local Versus Global Image C disease diagnosis and quantification. However, automatic pathological kidney segmentation is still a challenging task due to large variations in contrast phase, scanning range, pathology, and position in the abdomen, etc. Methods based on global image context (e.g., atlas- or regression-based appro
15#
發(fā)表于 2025-3-24 04:02:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:26:12 | 只看該作者
Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labelingdetection of pathologies, surgical assistance as well as computer-aided diagnosis (CAD). In general, the large variability of organ locations, the spatial interaction between organs that appear similar in medical scans and orientation and size variations are among the major challenges of organ segme
17#
發(fā)表于 2025-3-24 12:29:42 | 只看該作者
18#
發(fā)表于 2025-3-24 17:18:28 | 只看該作者
Yuan Feng,Yadie Rao,RongRong Fubility scores for lesions (or pathology). We found that this second stage is a highly selective classifier that is able to reject difficult false positives while retaining good sensitivity rates. The method was evaluated on three data sets (sclerotic metastases, lymph nodes, colonic polyps) with var
19#
發(fā)表于 2025-3-24 20:22:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:58 | 只看該作者
Andrea Valente,Emanuela Marchettiegies. In this chapter, we present deep learning based approaches for two challenged tasks in histological image analysis: (1) Automated nuclear atypia scoring (NAS) on breast histopathology. We present a Multi-Resolution Convolutional Network (MR-CN) with Plurality Voting (MR-CN-PV) model for autom
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临洮县| 吉首市| 年辖:市辖区| 鹰潭市| 伊春市| 扶风县| 荣成市| 夏邑县| 辽阳县| 老河口市| 广宗县| 黔西县| 木里| 仁化县| 丹棱县| 台南市| 故城县| 黄龙县| 介休市| 江源县| 合阳县| 白水县| 日土县| 临泽县| 深水埗区| 常州市| 临城县| 茂名市| 吉木萨尔县| 珠海市| 逊克县| 略阳县| 西吉县| 南涧| 郴州市| 长泰县| 丰台区| 武清区| 崇义县| 高台县| 武乡县|