找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Theory and Applications; 4th International Co Donatello Conte,Ana Fred,Carlo Sansone Conference proceedings 2023 The Editor(s

[復(fù)制鏈接]
查看: 36337|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:27:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Learning Theory and Applications
副標(biāo)題4th International Co
編輯Donatello Conte,Ana Fred,Carlo Sansone
視頻videohttp://file.papertrans.cn/265/264586/264586.mp4
叢書(shū)名稱Communications in Computer and Information Science
圖書(shū)封面Titlebook: Deep Learning Theory and Applications; 4th International Co Donatello Conte,Ana Fred,Carlo Sansone Conference proceedings 2023 The Editor(s
描述This book consitiutes the refereed proceedings of the 4th International Conference on Deep Learning Theory and Applications, DeLTA 2023, held in Rome, Italy from 13 to 14 July 2023..The 9 full papers and 22 short papers presented were thoroughly reviewed and selected from the 42 qualified submissions. The scope of the conference includes such topics as models and algorithms; machine learning; big data analytics; computer vision applications; and natural language understanding..
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; computer security; data security; distributed systems; parallel processing syst
版次1
doihttps://doi.org/10.1007/978-3-031-39059-3
isbn_softcover978-3-031-39058-6
isbn_ebook978-3-031-39059-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Deep Learning Theory and Applications影響因子(影響力)




書(shū)目名稱Deep Learning Theory and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Learning Theory and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Learning Theory and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Learning Theory and Applications被引頻次




書(shū)目名稱Deep Learning Theory and Applications被引頻次學(xué)科排名




書(shū)目名稱Deep Learning Theory and Applications年度引用




書(shū)目名稱Deep Learning Theory and Applications年度引用學(xué)科排名




書(shū)目名稱Deep Learning Theory and Applications讀者反饋




書(shū)目名稱Deep Learning Theory and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:16 | 只看該作者
,A Study of?Neural Collapse for?Text Classification,this additional cluster represents an additional topic within the dataset, challenging the initial assumption of four distinct classes in AG News. This significant discovery suggests a promising research direction, where NC can serve as a tool for cluster discovery in semi-supervised learning scenarios.
板凳
發(fā)表于 2025-3-22 03:23:26 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:05 | 只看該作者
Zhongwei Gu,Youxiang Cui,Haibo Tang,Xiao Liue make use of convolutional neural networks (CNN) and various data-augmentation techniques. We showcase the results of this approach on the challenging . dataset, with the task of classifying between different primate species sounds, and report significantly higher Accuracy and UAR scores in contrast to comparatively equipped model baselines.
5#
發(fā)表于 2025-3-22 11:26:30 | 只看該作者
6#
發(fā)表于 2025-3-22 12:59:29 | 只看該作者
Yun Liang,Junyi Mo,Yi Lu,Xing Yuan. Finally, we present an ablation study to validate our approach. We discovered that data2vec appears to be the best option if time and lightweightness are critical factors. On the other hand, wav2vec2phoneme is the most appropriate choice if overall performance is the primary criterion.
7#
發(fā)表于 2025-3-22 20:27:28 | 只看該作者
Improving Primate Sounds Classification Using Binary Presorting for Deep Learning,e make use of convolutional neural networks (CNN) and various data-augmentation techniques. We showcase the results of this approach on the challenging . dataset, with the task of classifying between different primate species sounds, and report significantly higher Accuracy and UAR scores in contrast to comparatively equipped model baselines.
8#
發(fā)表于 2025-3-23 00:59:38 | 只看該作者
An Automated Dual-Module Pipeline for Stock Prediction: Integrating N-Perception Period Power Stratlenges, we propose an automated pipeline consisting of two modules: an N-Perception period power strategy for identifying potential stocks and a sentiment analysis module using NLP techniques to capture market sentiment. By incorporating these methodologies, we aim to enhance stock prediction accuracy and provide valuable insights for investors.
9#
發(fā)表于 2025-3-23 02:40:53 | 只看該作者
,Phoneme-Based Multi-task Assessment of?Affective Vocal Bursts,. Finally, we present an ablation study to validate our approach. We discovered that data2vec appears to be the best option if time and lightweightness are critical factors. On the other hand, wav2vec2phoneme is the most appropriate choice if overall performance is the primary criterion.
10#
發(fā)表于 2025-3-23 06:23:49 | 只看該作者
1865-0929 submissions. The scope of the conference includes such topics as models and algorithms; machine learning; big data analytics; computer vision applications; and natural language understanding..978-3-031-39058-6978-3-031-39059-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 11:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家口市| 合山市| 阳春市| 正定县| 大埔区| 平昌县| 新民市| 庐江县| 原平市| 偏关县| 新乡县| 高青县| 阜平县| 水城县| 济源市| 兴山县| 厦门市| 朔州市| 博白县| 柳河县| 庆阳市| 临澧县| 瑞安市| 沭阳县| 施秉县| 宿松县| 凤阳县| 鄯善县| 从化市| 平顺县| 哈巴河县| 封开县| 长岭县| 西华县| 赤峰市| 田林县| 隆安县| 张家口市| 巧家县| 牙克石市| 崇州市|