找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning Theory and Applications; Third International Ana Fred,Carlo Sansone,Kurosh Madani Conference proceedings 2023 The Editor(s)

[復(fù)制鏈接]
查看: 55502|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:18:38 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning Theory and Applications
副標(biāo)題Third International
編輯Ana Fred,Carlo Sansone,Kurosh Madani
視頻videohttp://file.papertrans.cn/265/264585/264585.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Deep Learning Theory and Applications; Third International  Ana Fred,Carlo Sansone,Kurosh Madani Conference proceedings 2023 The Editor(s)
描述This book constitutes the refereed post-conference proceedings of the Third?International Conference on Deep Learning Theory and Applications, DeLTA?2022, held in Lisbon, Portugal, during January 17-18, 2022..The 6 full papers included in this book were carefully reviewed and selected from 36 submissions. They present recent research on machine learning and artificial intelligence in real-world applications such as computer vision, information retrieval and summarization from structured and unstructured multimodal data sources, natural language understanding and translation, and many other application domains..
出版日期Conference proceedings 2023
關(guān)鍵詞Models and Algorithms; Machine Learning; Big Data Analytics; Computer Vision; Natural Language Understan
版次1
doihttps://doi.org/10.1007/978-3-031-37317-6
isbn_softcover978-3-031-37316-9
isbn_ebook978-3-031-37317-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning Theory and Applications影響因子(影響力)




書目名稱Deep Learning Theory and Applications影響因子(影響力)學(xué)科排名




書目名稱Deep Learning Theory and Applications網(wǎng)絡(luò)公開度




書目名稱Deep Learning Theory and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning Theory and Applications被引頻次




書目名稱Deep Learning Theory and Applications被引頻次學(xué)科排名




書目名稱Deep Learning Theory and Applications年度引用




書目名稱Deep Learning Theory and Applications年度引用學(xué)科排名




書目名稱Deep Learning Theory and Applications讀者反饋




書目名稱Deep Learning Theory and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:18:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:09:06 | 只看該作者
地板
發(fā)表于 2025-3-22 05:25:06 | 只看該作者
5#
發(fā)表于 2025-3-22 11:15:18 | 只看該作者
Emma Strebel,Ellen Kathrine Hansenional machine learning methods can be exploited. In particular, in the DeepWalk model, truncated random walks are employed in random walk-based approaches to capture structural links-connections between nodes. The SkipGram model is then applied to the truncated random walks to compute the embedded n
6#
發(fā)表于 2025-3-22 16:29:03 | 只看該作者
7#
發(fā)表于 2025-3-22 21:03:43 | 只看該作者
https://doi.org/10.1007/978-3-642-39655-7nge of image domains. However, the model is only able to obtain such a high performance on in-distribution samples. On out-of-distribution samples, in contrast, the performance of the model may be significantly decreased. To detect out-of-distribution samples, Papernot and McDaniel [.] introduced a
8#
發(fā)表于 2025-3-22 23:54:35 | 只看該作者
9#
發(fā)表于 2025-3-23 02:21:14 | 只看該作者
10#
發(fā)表于 2025-3-23 07:51:25 | 只看該作者
https://doi.org/10.1007/978-3-031-05014-5sing advances in computer vision and computational geometry. The conventional data processing workflow uses semantic segmentation to identify road points from three-dimensional (3D) automotive LiDAR point clouds, which have to be extended to determine its boundary points. The boundary points are cri
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 09:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谷城县| 荆州市| 蓬安县| 繁峙县| 大安市| 五台县| 治县。| 济南市| 铜梁县| 静海县| 宜宾市| 克拉玛依市| 中山市| 松江区| 砚山县| 房山区| 景德镇市| 历史| 灵川县| 陇南市| 长岭县| 辽阳县| 射洪县| 渝北区| 北京市| 囊谦县| 枣强县| 泌阳县| 大埔县| 红原县| 偃师市| 莱西市| 鸡西市| 九江市| 巴东县| 莱芜市| 无为县| 北流市| 新津县| 富顺县| 灵宝市|